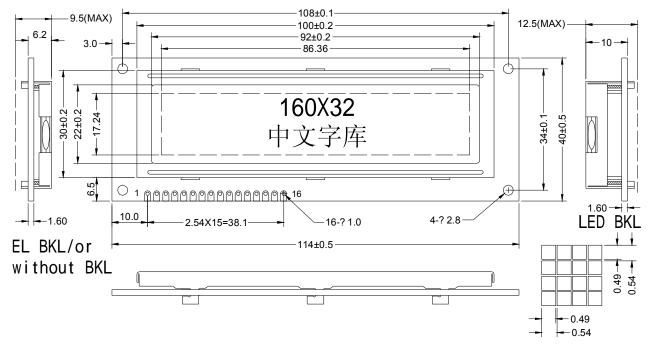


LCD PRODUCT SPECIFICATION

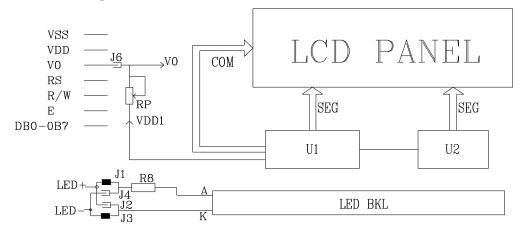
PART NUMBER:	USMPG-TQ12864C-SZCFI
DESCRIPTION:	128x64 Graphic LCD; FSTN Display Mode; Transmissive, Negative
	with RGB LED Sidelight and 6 O'Clock Viewing Direction.


ISSUE DATE	APPROVED BY	CHECKED BY	PREPARED BY
	(Customer Use Only)		
PROPRIETARY NOTE:	THIS SPECIFICATION IS THE PROPERTY OF COPIED WITHOUT THE WRITTEN PERMINERO		AND MUST BE RETURNED TO

1.Features

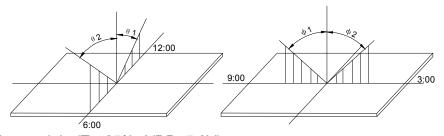
- 1. 160x32 dots with 8192 chinese character fonts (16x16)
- 2. Built-in controller (ST920-0B or equivalent)
- 3 +5.0v power supply
- 4. Display Mode: STN (Blue), Negative, transmissive
- 5. Viewing angle: 6 O'clock
- 6、 1/32 duty
- 7. Built-in voltage booster
- 8, 4 bit, 8 bit, serial interface
- 9. Backlight(White) to be driven by pin 15, pin 16

2. Outline dimension



3. Absolute maximum ratings

	~				
Item	Symbol		Standard		Unit
Power supply voltage	V _{DD} -V _{SS}	-0.3	-	6.0	\/
Input voltage	VIN	-0.3	-	VDD+0.3	V
Operating temperature range	Тор	-20	-	+70	℃
Storage temperature range	Tst	-30	-	+80	C


4.Block diagram

5.Interface pin description

	iace piii ae	200111211	
Pin no.	Symbol	External connection	Function
1	$V_{ extsf{SS}}$		Signal ground for LCM (GND)
2	V_{DD}	Power supply	Power supply for logic for LCM
3	V ₀		Contrast adjust
4	RS(CS)	MPU	Register select signal(chip select for serial mode)
5	R/W(SID)	MPU	Read/write select signal(serial data input for serial mode)
6	E(SCLK)	MPU	Operation (data read/write) enable signal(serial clock for serial mode)
7~10	DB0~DB3	MPU	Four low order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCM. These four are not used during 4-bit operation.
11~14	DB4~DB7	MPU	Four high order bi-directional three-state data bus lines. Used for data transfer between the MPU
15	LED+	LED BKL power	Power supply for Backlight (Anode +5.0V)
16	LED-	supply	Power supply for BKL (GND)

6.Optical characteristics

HTN type display module (Ta=25°C, VDD=5.0V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
	θ 1			20		
Viewing angle	θ 2	Cr≥3		40		deg
Viewing angle	Ф1	Or>5		35		ueg
	Ф2			35		
Contrast ratio	Cr		ı	10	-	ı
Response time (rise)	Tr	-	ı	200	250	mc
Response time (fall)	Tr	-	-	300	350	ms

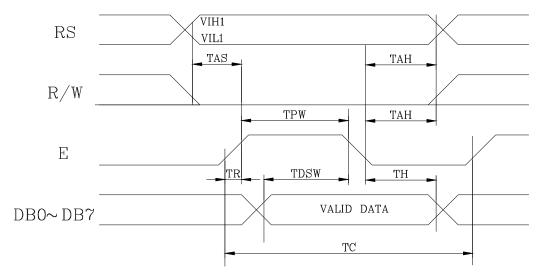
7.Electrical characteristics BACKLIGHT CIRCUIT DIAGRAM(LIGHT 2X1 COLOR :WHITE)

LED RATINGS

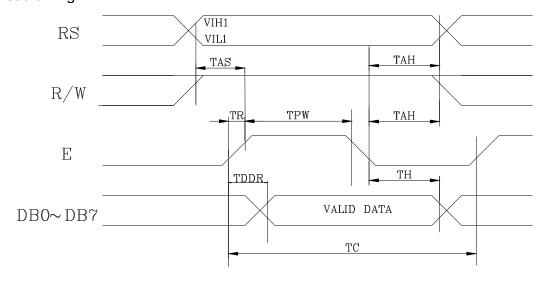
ITEM	SYMBOL	MIN	TYP.	MAX	UNIT
FORWARD VOLTAGE	V _F	2.8	3.0	3.2	V
FORWARD CURRENT	If	-	20	30	MA
POWER	Р	-	-	160	MW
PEAK WAVE LENGTH	ΛР	-		-	NM
LUMINANCE	LV	-	200	-	CD/M ²

DC characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage for LCD	V _{LCD}		-	5.7	-	V
Input voltage	V_{DD}	V=5.0V	4.5	5.0	5.5	
Supply current	l _{DD}	Ta=25℃, V _{DD} =5.0V	-	2	4	mA
Input leakage current	ILKG		-	-	1.0	uA
"H" level input voltage	VIH		2.2	-	V _{DD}	
"L" level input voltage	٧L	Twice initial value or less	0	-	0.6	
"H" level output voltage	Vон	LOH=-0.25mA	2.4	-	-	V
"L" level output voltage	Vol	LOH=1.6mA	-	-	0.4	
Backlight supply voltage	VF		-	-	5.0	
Backlight supply current	led	V _{LED} =5.0V R=100Ω	-	20	-	mA


AC Characteristics (T_A = -30°C ~ 85°C, V_{DD} = 4.5V) Parallel Mode Interface

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit						
	Internal Clock Operation											
fOSC	OSC Frequency	R = 33KW	480	540	600	KHz						
	E	xternal Clock Operation	า									
fEX	External Frequency	-	480	540	600	KHz						
	Duty Cycle	-	45	50	55	%						
TR,TF	Rise/Fall Time	-	-	-	0.2	μσ						
	Write Mode (Writing data from MPU	to ST79	920)								
TC	Enable Cycle Time	Pin E	1200	-	-	ns						
TPW	Enable Pulse Width	Pin E	140	-	-	ns						
TR,TF	Enable Rise/Fall Time	Pin E	-	ı	25	ns						
TAS	Address Setup Time	Pins: RS,RW,E	10	-	-	ns						
TAH	Address Hold Time	Pins: RS,RW,E	20	-	-	ns						
TDSW	Data Setup Time	Pins: DB0 - DB7	40	-	-	ns						
TH	Data Hold Time	Pins: DB0 - DB7	20	-	-	ns						



	Read Mode (F	Reading Data from ST7	'920 to N	1PU)		
TC	Enable Cycle Time	Pin E	1200	ı	ı	ns
TPW	Enable Pulse Width	Pin E	140	ı	ı	ns
TR,TF	Enable Rise/Fall Time	Pin E	ı	ı	25	ns
TAS	Address Setup Time	Pins: RS,RW,E	10	-	-	ns
TAH	Address Hold Time	Pins: RS,RW,E	20	-	-	ns
TDDR	Data Delay Time	Pins: DB0 - DB7	ı	ı	100	ns
TH	Data Hold Time	Pins: DB0 - DB7	20	-	-	ns

Write Timing

Read timing

8.Function Description

n System interface

The GDM16032A supports 3 kinds of bus interface to communicate with MPU: 8-bit parallel, 4-bit parallel and clock synchronized serial interface. Parallel interface is selected by PSB="P" and serial interface is by PSB="S". 8-bit / 4-bit interface is selected by function set instruction DL bit.

Busy Flag (BF)

The LCD module needs a process time for any received instruction. Before finishing the received instruction, any further instruction is not accepted. The process time of each instruction is not equal and the internal process is finished or not can be determined by the BF. Internal operation is in progress while BF="1", that means module is in busy state. No further instructions will be accepted until BF="0". MPU must check BF to determine whether the internal operation is finished or not before issuing instruction.

n Character Generation ROM (CGROM) and Half-width Character Generation ROM (HCGROM)

The LCD module is built in a Character Generation ROM (CGROM) to provide 8192 16x16 character fonts and a Half-width Character Generation ROM to provide 128 8x16 alphanumeric characters. It is easy to support multi-language applications such as Chinese and English. Two consecutive bytes are used to specify one 16x16 character or two 8x16 half-width characters. Character codes are written into DDRAM and the corresponding fonts are mapped from CGROM or HCGROM to the display drivers.

n Character Generation RAM (CGRAM)

The LCD module is built in a Character Generation RAM (CGRAM) to support user-defined fonts. Four sets of 16x16 bit-mapped RAM spaces are available. These user-defined fonts are displayed the same ways as CGROM fonts by writing the related character code into the DDRAM.

n Display Data RAM (DDRAM)

There are 64x256 bytes RAM spaces for the Display Data RAM. It can store display data such as 10 characters (16x16) by 2 lines or 32 characters (8x16) by 4 lines. However, only 2 character-lines (maximum 32 common outputs) can be displayed at one time. Character codes stored in DDRAM will refer to the fonts specified by CGROM, HCGROM and CGRAM. The LCD module can display half-width HCGROM fonts, user-defined CGRAM fonts and full 16x16 CGROM fonts. The character codes in 0000H~0006H will use user-defined fonts in CGRAM. The character codes in 02H~7FH will use half-width alpha numeric fonts. The character code larger than A1H will be treated as 16x16 fonts and will be combined with the next byte automatically. The 16x16 BIG5 fonts are stored in A140H~D75FH while the 16x16 GB fonts are stored in A1A0H~F7FFH. In short:

1. To display HCGROM fonts:

Write 2 bytes of data into DDRAM to display two 8x16 fonts. Each byte represents 1 character. The data is among 02H~7FH.

2. To display CGRAM fonts:

Write 2 bytes of data into DDRAM to display one 16x16 font. Only 0000H, 0002H, 0004H and 0006H are acceptable.

3. To display CGROM fonts:

Write 2 bytes of data into DDRAM to display one 16x16 font. A140H~D75FH are BIG5 code, A1A0H~F7FFH are GB code.

The higher byte (D15~D8) is written first and the lower byte (D7~D0) is the next.

Please refer to Table 1 for the relationship between DDRAM and the address/data of CGRAM.

CGRAM fonts and CGROM fonts can only be displayed in the start position of each address. (Refer to Table 4)

n Graphic RAM (GDRAM)

Graphic Display RAM has 64x256 bits bit-mapped memory space. GDRAM address is set by writing 2 consecutive bytes of vertical address and horizontal address. Two-byte data (16 bits) configures one GDRAM horizontal address. The Address Counter (AC) will be increased by one automatically after receiving the 16-bit data for the next operation. After the horizontal address reaching 0FH, the horizontal address will be set to 00H and the vertical address will not change. The procedure is summarized below:

Set vertical address (Y) for GDRAM

- 2. Set horizontal address (X) for GDRAM
- 3. Write D15~D8 to GDRAM (first byte)
- 4. Write D7~D0 to GDRAM (second byte)

Please refer to Table 3 for Graphic Display RAM mapping.

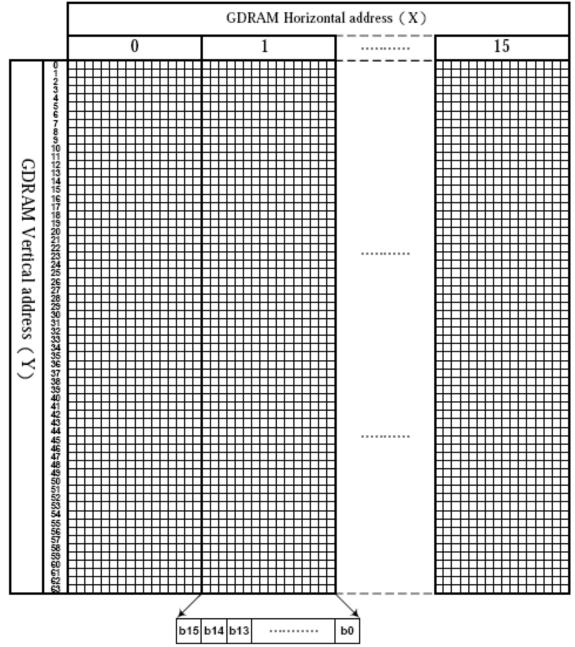
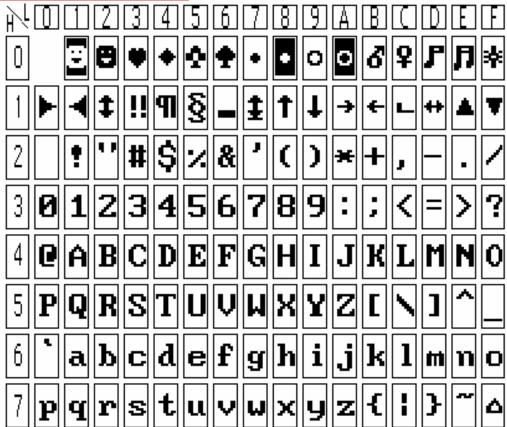


Table 3 GDRAM display coordinates and corresponding address



DDRAM	d	at	a		C	GF	₹.A	M		() G	iR	Α	М	da	ata	3	(CG	iR	Α	М	da	ata	1				
(char. c			١d				(hi	gŀ	ne	r I	οу	te)		(lo	w	eı	b	yt	e)								
	В	В	В	В	ВВ	В	В	В	В	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D				
B15~ B4	3	2	1	0	5 4	3	2	1	0	1	1	1	1	1	1	9	8	7	6	5	4	3	2	1	0				
										5	4	3	2	1	0														
						0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0				
						0	0	0	1	1	1	1	1	1	1	1	0	0	1	0	0	0	0	0	0				
						0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0		0	0				
						0	0	1	1	0	-	_	1	0	0	0	-		1	1	1	1	1	1	0				
						0	1	0	0	0	_	_	_	0	1	0	-	_	-	_	0	0	1	-	Н				
						0	1	0	1	0	0	_	1	1	1	-	0	1	0	0	0	0	1	0	0				
						0	1	1	0	0	1	1	0	0	1	0	1	0	1	0	0	1	-	0	0				
0	х	0	0	x	00	0	1	1	1	1	0	1	0	0	1	-	0	_	1	0	_	1	-	0	0				
		ľ	_		-	1	0	0	0	0	0	1	-	0	1		0	-	1	0	_	0	0	-	0				
						1	0	0	1		0	1	_	0	1	0	0	_	-	0	1	0	-	0	0				
						1	0	1	0	-	0	1		0	1	_	0	_	Ť	1	Ĕ	0	-	0	0				
						1	0	1	1	_	0	1	1	1	1	_	0	_		1	_	-	0	-	0				
						1	1	0	0	_	0	1		0	1	_	0	_	-	0	_	0	_	0	0				
						1	1	0	1	-	0	_	-	0	0	-	0	_	-	0	_	0	0	-	0				
										1	1	1	0	_	0	-	-	0		-	1	-	-	0	-	0	0	-	0
	L			L		1	1	1	1	_	0	0	-	0	0	-	0	-	-	0	-	0	_	0	0				
						0	0	0	0	_	0	0	_	1	1	_	0	-	-	0	-	0	1	1	0				
						0	0	0	1	0	0		1	1	0	1	0		-	0		0	1	-	0				
						0	0	1	0	0	0	1	0	0	0	0	1	0	0	1	1	0	1	0	0				
						0	0	1	1	0	1	0	1	1	1	0	1	1	0	1	0	0	1	0	0				
						0	1	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0				
						0	1	0	1	0	1	1	1	1	1	1	1	0	0	1	0	0	1	0	0				
						0	1	1	0	0	1	0		0	0	_	1	0	-	1	0	0		0	0				
0	Х	0	1	х	01	0	1	1	1	0	1	1	1	1	1	1	1	0	-	1	0	0	1	0	0				
		-				1	0	0	0	0	1	0		0	0	0	1	0	Ť	1	0	0	1	0	0				
						1	0	0	1	0	1	1	1	1	1	1	1	0	0	1	0	0	1	0	0				
						1	0	1	0	0	1	0		0	0		0		-	1	0	0	1	0	0				
						1	0	1	1	0	1	1	1	1	1	1	1	1	0		0	0	1	0	0				
						1	1	0	0	1	0	1	_	0	0		0	1	_	1	0	0	-	0	0				
						1	1	0	1	1	0	1	1	1	1	1	1	1	-	0	_	1	1	0	0				
						1	1	1	0	1	0	1	-	0	0	_	0	1	-	0	_	1	0	0	0				
T-11-4 -						1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				

Table1 DDRAM data (character code) vs. CGRAM data/address map Notes:

- 1. DDRAM data (character code) bit1 and bit2 are identical with CGRAM address bit4 and bit5.
- 2. CGRAM address bit0 to bit3 specify total 16 rows. Row-16 is for cursor display. The data in Row-16 will be logically OR to the cursor.
- 3. CGRAM data for each address is 16 bits.
- 4. To select the CGRAM font, the bit4 through bit15 of DDRAM data must be "0" while bit0 and bit3 are "don't care".

16x8 half-width characters

9.Display command

Instruction Set 1: (RE=0: Basic Instruction)

					Со	de					B 1.4	Exec time
Inst.	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(540KHZ)
Display Clear	0	0	0	0	0	0	0	0	0	1	Fill DDRAM with "20H" and set DDRAM address counter (AC) to "00H".	1.6 ms
Return Home	0	0	0	0	0	0	0	0	1	Х	Set DDRAM address counter (AC) to "00H", and put cursor to origin : the content of DDRAM are not changed	72 us
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	s	Set cursor position and display shift when doing write or read operation	72 us
Display Control	0	0	0	0	0	0	1	D	С	В	D=1: Display ON C=1: Cursor ON B=1: Character Blink ON	72 us
Cursor Display Control	0	0	0	0	0	1	S/C	R/L	Х	Х	Cursor position and display shift control; the content of DDRAM are not changed	72 us
Function Set	0	0	0	0	1	DL	Х	0 RE	Х	Х	DL=1 8-bit interface DL=0 4-bit interface RE=1: extended instruction RE=0: basic instruction	72 us
Set CGRAM Address.	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address to address counter (AC) Make sure that in extended instruction SR=0 (scroll or RAM address select)	72 us
Set DDRAM Address.	0	0	1	0 AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address to address counter (AC) AC6 is fixed to 0	72 us
Read Busy Flag (BF) & AC.	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Read busy flag (BF) for completion of internal operation, also Read out the value of address counter (AC)	0 us
Write RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data to internal RAM (DDRAM/CGRAM/GDRAM)	72 us
Read RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM/GDRAM)	72 us

Instruction set 2: (RE=1: extended instruction)

Inot					Со	de					Description	Exec time
Inst.	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(540KHZ)
Standby	0	0	0	0	0	0	0	0	0	1	Enter standby mode, any other instruction can terminate. COM132 are halted.	72 us
Scroll or RAM Address. Select	0	0	0	0	0	0	0	0	1	SR	SR=1: enable vertical scroll position SR=0: enable CGRAM address (basic instruction)	72 us
Reverse (by line)	0	0	0	0	0	0	0	1	R1	l	Select 1 out of 4 line (in DDRAM) and decide whether to reverse the display by toggling this instruction R1,R0 initial value is 0,0	72 us
Extended Function Set	0	0	0	0	1	DL	х	1 RE	G	0	DL=1 :8-bit interface DL=0 :4-bit interface RE=1: extended instruction set RE=0: basic instruction set G=1 :graphic display ON G=0 :graphic display OFF	72 us
Set Scroll Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	SR=1: AC5~AC0 the address of vertical scroll	72 us
Set Graphic Display RAM Address	0	0	1	0	0 AC5	0 AC4			AC1 AC1		Set GDRAM address to address counter (AC) Set the vertical address first and followed the horizontal address by consecutive writings Vertical address range: AC5AC0 Horizontal address range: AC3AC0	72 us

Note:

- 1. Make sure that ST7920 is not in busy state by reading the busy flag before sending instruction or data. If using delay loop instead, please make sure the delay time is enough. Please refer to the instruction execution time.
- 2. "RE" is the selection bit of basic and extended instruction set. After setting the RE bit, the value will be kept. So that the software doesn't have to set RE every time when using the same instruction set.

Initial Setting (Register flag) (RE=0: basic instruction)

Inat					Со	de					Description
Inst.	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Entry Mode	0	0	0	0	0	0	0	1	I/D	S	
Set									1	0	Cursor move to right ,DDRAM address counter (AC) plus 1
Display	0	0	0	0	0	0	1	D	С	В	
Control								0	0	0	Display, cursor and blink are ALL OFF
CURSOR	0	0	0	0	0	1	S/C	R/L	Х	Х	
DISPLAY SHIFT							х	х			No cursor or display shift operation
FUNCTION	0	0	0	0	1	DL	Х	0 RE	Х	Х	8-bit MPU interface , basic instruction set
SET						1		0			o-bit Mir o interiace , basic instruction set

Initial Setting (Register flag) (RE=1: extended instruction set)

Inat					Со	de					Description
Inst.	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
SCROLL OR RAM	0	0	0	0	0	0	0	0	1	SR	
ADDR. SELECT										0	Allow IRAMaddress or set CGRAM address
DE / EDOE	0	0	0	0	0	0	0	1	R1	R0	
REVERSE									0	0	Begin with normal and toggle to reverse
EXTENDED	0	0	0	0	1	DL	Х	1 RE	G	0	Graphic display OFF
FUNCTION SET									0		Graphic display OFF

Description of basic instruction set

I Display Clear

-										
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	0	0	0	0	0	1

This instruction will change the following items:

- 1. Fill DDRAM with "20H"(space code).
- 2. Set DDRAM address counter (AC) to "00H".
- 3. Set Entry Mode I/D bit to be "1". Cursor moves right and AC adds 1 after write or read operation.

I Return Home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	-

Set address counter (AC) to "00H". Cursor moves to origin. Then content of DDRAM is not changed.

Entry Mode Set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	S

Set the cursor movement and display shift direction when doing write or read operation.

I/D: Address Counter Control: (Increase/Decrease)

When I/D = "1", cursor moves right, address counter (AC) is increased by 1. When I/D = "0", cursor moves left, address counter (AC) is decreased by 1.

S: Display Shift Control: (Shift Left/Right)

S	I/D	DESCRIPTION
Н	Н	Entire display shift left by 1
Н	L	Entire display shift right by 1

Display Control

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	С	В

Controls display, cursor and blink ON/OFF.

D: Display ON/OFF control bit

When D = "1", display ON

When D = "0", display OFF, the content of DDRAM is not changed

C: Cursor ON/OFF control bit

When C = "1", cursor ON.

When C = "0", cursor OFF.

B: Character Blink ON/OFF control bit

When B = "1", cursor position blink ON. Then display data (character) in cursor position will blink.

When B = "0", cursor position blink OFF

I Cursor/Display Shift Control

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	-	-

This instruction configures the cursor moving direction or the display shifting direction. The content of DDRAM is not changed.

S/C	R/L	Description	AC Value
L	L	Cursor moves left by 1 position	AC=AC-1
L	Н	Cursor moves right by 1 position	AC=AC+1
Н	L	Display shift left by 1, cursor also follows to shift.	AC=AC
Н	Н	Display shift right by 1, cursor also follows to shift.	AC=AC

I Function Set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	-	RE	-	-

DL: 4/8-bit interface control bit

When DL = "1", 8-bit MPU bus interface

When DL = "0", 4-bit MPU bus interface

RE: extended instruction set control bit

When RE = "1", extended instruction set

When RE = "0", basic instruction set

In same instruction cannot alter DL and RE at once. Make sure that change DL first then RE.

I Set CGRAM Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address into address counter (AC)

AC range is 00H...3FH

Make sure that in extended instruction SR=0 (scroll address or RAM address select)

I Set DDRAM Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Set DDRAM address into address counter (AC).

First line AC range is 80H...8FH

Second line AC range is 90H...9FH

Third line AC range is A0H...AFH

Fourth line AC range is B0H...BFH

Please note that only 2 lines can be display

I Read Busy Flag (BF) and Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Read busy flag (BF) can check whether the internal operation is finished or not. At the same time, the value of address counter (AC) is also read. When BF = "1", further instruction(s) will not be accepted until BF = "0".

Write Data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write data to the internal RAM and increase/decrease the (AC) by 1

Each RAM address (CGRAM, DDRAM and GDRAM...) must write 2 consecutive bytes for 16-bit data. After receiving the second byte, the address counter will increase or decrease by 1 according to the entry mode set control bit.

I Read RAM Data

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read data from the internal RAM and increase/decrease the (AC) by 1

After the operation mode changed to Read (CGRAM, DDRAM and GDRAM...), a "Dummy Read" is required. There is no need to add a "Dummy Read" for the following bytes unless a new address set instruction is issued.

Description of extended instruction set

I Standby

,									
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

This Instruction will set ST7920 entering the standby mode. Any other instruction follows this instruction will terminate the standby mode.

The content of DDRAM remains the same.

I Vertical Scroll or RAM Address Select

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	SR

When SR = "1", the Vertical Scroll mode is enabled.

When SR = "0", "Set CGRAM Address" instruction (basic instruction) is enabled.

I Reverse

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	R1	R0

Select 1 out of 4 lines to reverse the display and to toggle the reverse condition by repeating this instruction. R1, R0 initial vale is 00. The first time issuing this instruction, the display will be reversed while the second time will return the display become normal.

R1	R0	Description
L	L	First line normal or reverse
L	Н	Second line normal or reverse
Н	L	Third line normal or reverse
Н	Н	Fourth line normal or reverse

I Extended Function Set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	-	RE	G	-

DL: 4/8-bit interface control bit

When DL = "1", 8-bit MPU interface. When DL = "0", 4-bit MPU interface.

RE: extended instruction set control bit When RE = "1", extended instruction set

When RE = "0", basic instruction set

G: Graphic display control bit

When G = "1", Graphic Display ON

When G = "0", Graphic Display OFF

In same instruction cannot alter DL, RE and G at once. Make sure that change DL or G first and then RE.

Set Scroll Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

SR=1: AC5~AC0 is vertical scroll displacement address

I Set Graphic RAM Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	AC5	AC4	AC3	AC2	AC1	AC0

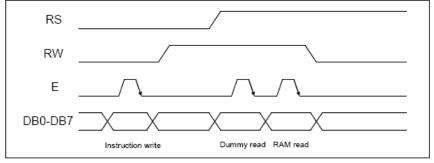
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	0	AC3	AC2	AC1	AC0

Set GDRAM address into address counter (AC). This is a 2-byte instruction.

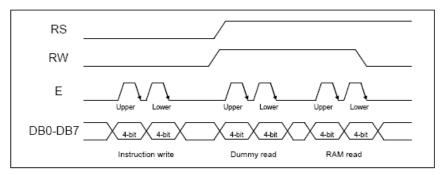
The first instruction sets the vertical address while the second one sets the horizontal address (write 2 consecutive bytes to complete the vertical and horizontal address setting).

Vertical address range is AC5...AC0

Horizontal address range is AC3...AC0

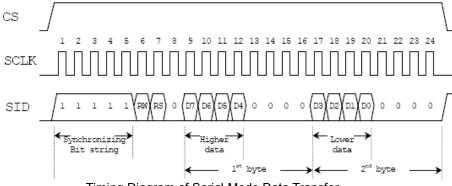

The address counter (AC) of graphic RAM (GRAM) will be increased automatically after the vertical and horizontal addresses are set. After horizontal address is increased up to 0FH, it will automatically return to 00H. However, the vertical address will not increase as the result of the same action.

n Parallel interface:


The LCD module is in parallel mode by pulling up PSB pin. The LCD module can select 8-bit or 4-bit bus interface by setting the DL control bit in "Function Set" instruction. MPU can control RS, RW, E and DB0...DB7 pins to complete the data transmission.

In 4-bit transfer mode, every 8-bit data or instruction is separated into 2 parts. The higher 4 bits (bit-7~bit-4) data will be transferred first through data pins (DB7~DB4). The lower 4 bits (bit-3~bit-0) data will be transferred second through data pins (DB7~DB4). The (DB3~DB0) data pins are not used during 4-bit transfer mode.

Timing Diagram of 8-bit Parallel Bus Mode Data Transfer

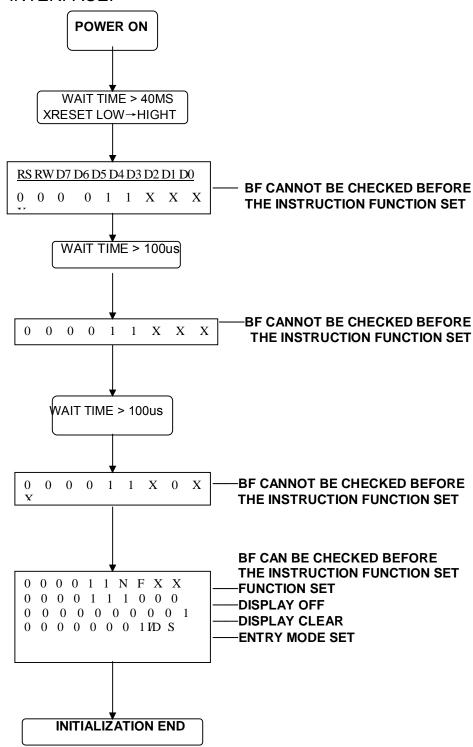

Timing Diagram of 4-bit Parallel Bus Mode Data Transfer

n Serial Interface & Transferring Serial Data

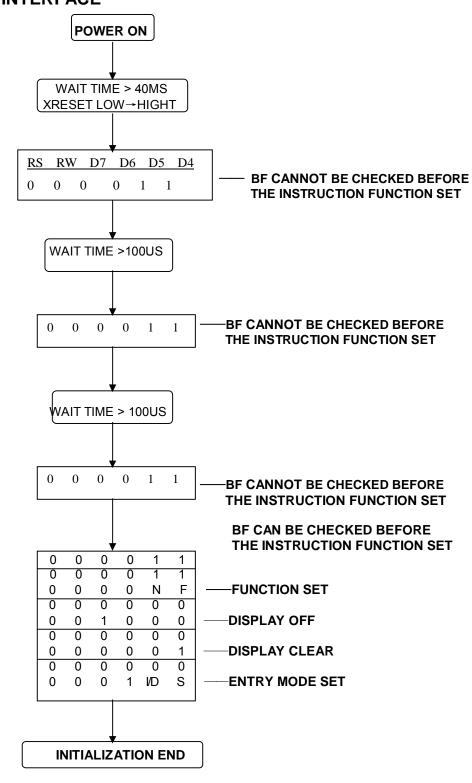
The LCD module enters serial mode when the PSB pin is set low. A two-line clock synchronous transfer method is used. The module receives serial input data (SID) by synchronizing with a transfer clock (SCLK) sent from the master side. When the st7920 interfaces with several chips, chip select pin (CS) must be used. The transfer clock (SCLK) input is activated by making chip select (CS) high. In addition, the transfer counter of the st7920 can be reset and serial transfer synchronized by making chip select (CS) low. Here, since the data which was being sent at reset is cleared, restart the transfer from the first bit of this data. In a minimum system where a single module interfaces to a single MPU, an interface can be constructed from the transfer clock (SCLK) and serial input data (SID). In this case, chip select (CS) should be fixed to high.

the transfer clock(SCLK) is independent of operational clock of the LCD module. However, when several instructions are continuously transferred, the instruction execution time determined by the operational clock must be considered since the st7920 does not have an internal transmit/receive buffer. Following figure shows the basic procedure for transferring serial data. To begin with, transfer the start byte. By receiving five consecutive bits of 1(synchronizing bit string) at the beginning of the start byte, the transfer counter of the st7920 is reset and serial transfer is synchronized. The 2 bits following the synchronizing bit string(5 bits) specify transfer direction(R/W bit) and register select(RS bit). Be sure to transfer 0 in the 8 bit.

After receiving the start synchronizing bit string, the R/W bit (=0), and RS bit in the start byte, an 8-bit instruction is received in 2 bytes: the higher 4 bits of the instruction are placed in the lsb of the first byte, and the lower 4 bits of the instruction are placed in the lsb of the second byte. Be sure to transfer 0 in the following 4 bits of each byte.

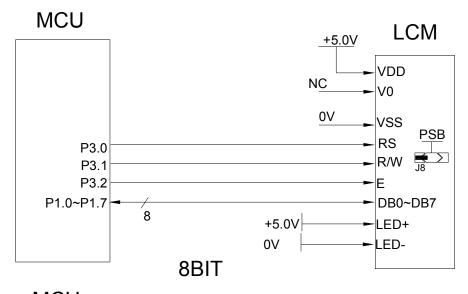


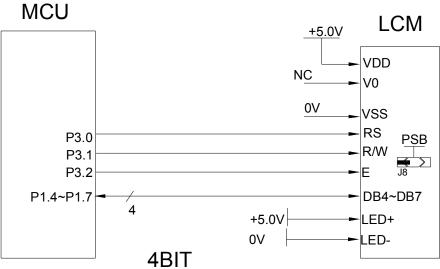
Timing Diagram of Serial Mode Data Transfer

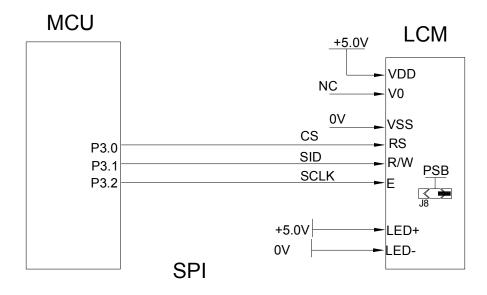


n INITIALIZING BY INSTRUCTION

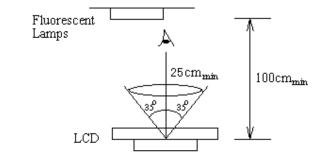
i 8-BIT INTERFACE:





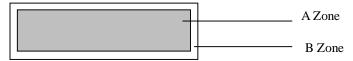


Product	Font Type
ST7920-0A	BIG-5 code traditional character set
ST7920-0B	GB code simplified character set
ST7920-0C	GB code,BIG-5 code and Japanese code



10.QUALITY SPECIFICATIONS

10.1 Standard of the product appearance test


Manner of appearance test: The inspection should be performed in using 20W x 2 fluorescent lamps. Distance between LCM and fluorescent lamps should be 100 cm or more. Distance between LCM and inspector eyes should be 25 cm or more.

Viewing direction for inspection is 35° from vertical against LCM.

Definition of zone:

LCM

A Zone: Active display area (minimum viewing area). B Zone: Non-active display area (outside viewing area).

10.2 Specification of quality assurance

AQL inspection standard

Sampling method: GB2828-87, Level II, single sampling

Defect classification (Note: * is not including)

ect classification (Note: * is not including)				
Classify		Item	Note	AQL
Major	Display state	Short or open circuit	1	0.65
		LC leakage		
		Flickering		
		No display		
		Wrong viewing direction		
		Contrast defect (dim, ghost)	2	
		Back-light	1,8	
	Non-display	Flat cable or pin reverse	10	
		Wrong or missing component	11	
Minor	Display	Background color deviation	2	1.0
	state	Black spot and dust	3	
		Line defect, Scratch	4	
		Rainbow	5	
		Chip	6	
		Pin hole	7	
		Protruded	12	
	Polarizer	Bubble and foreign material	3	
	Soldering	Poor connection	9	
	Wire	Poor connection	10	
	TAB	Position, Bonding strength	13	

Note on detect classification

No.	Item	Criterion	
1	Short or open circuit	Not allow	
	LC leakage		
	Flickering		
	No display		
	Wrong viewing direction		
	Wrong Back-light		
2	Contrast defect	Refer to approval sample	
	Backgroundcolor deviation		
3	Point defect, Black spot, dust (including Polarizer) φ = (X+Y)/2	Point Acceptable Qty. Size $\phi \leq 0.10$ Disregard $0.10 < \phi \leq 0.15$ 2 $0.15 < \phi \leq 0.25$ 1 $\phi > 0.25$ 0	
		Unit: Inch ²	
4	Line defect, Scratch	$\begin{array}{c ccccc} & & & & & & \\ & & & & & \\ & & & L & & & \\ L & & & &$	
5	Rainbow	Not more than two color changes across the viewing area.	

No	Item	Criterion	
6	Chip Remark: X: Length direction Y: Short direction	$\begin{array}{c c} X & y \\ \hline Z & & \downarrow \\ \hline \leftarrow & L & \rightarrow \end{array}$	Acceptable criterion
	Z: Thickness direction t: Glass thickness W: Terminal Width L:Glass	X Y Z	Acceptable criterion
	length	Y	Acceptable criterion $ \begin{array}{c cccc} X & Y & Z \\ \hline \leqslant 3 & \leqslant 2 & \leqslant t \\ \hline \text{shall not reach to ITO} & \end{array} $
		W_{\downarrow} Y \downarrow X	Acceptable criterion
		$\begin{array}{c c} Y \\ & \downarrow \\ X & Z \end{array}$	Acceptable criterion $ \begin{array}{c cccc} X & Y & Z \\ \hline \leqslant 5 & \leqslant 2 & \leqslant t/3 \end{array} $

	Lieutonic Froducts for the OLIM			
No.	Item	Criterion		
7	Segment pattern W = Segment width φ = (X+Y)/2	(1) Pin hole $\phi < 0.10 \text{mm is acceptable.}$ Y		
8	Back-light	(1) The color of backlight should correspond its specification.		
9	Soldering	(2) Not allow flickering (1) Not allow heavy dirty and solder ball on PCB. (The size of dirty refer to point and dust defect) (2) Over 50% of lead should be soldered on Land. Lead Land 50% lead		
10	Wire	 (1) Copper wire should not be rusted (2) Not allow crack on copper wire connection. (3) Not allow reversing the position of the flat cable. (4) Not allow exposed copper wire inside the flat cable. 		
11*	PCB	(1) Not allow screw rust or damage. (2) Not allow missing or wrong putting of component.		

No	Item	Criterion	
12	Protruded W: Terminal Width	Acceptable criteria: $Y \le 0.4$	
13	TAB	1. Position W W W W W W W W W W W W W W W W W W	
14	Total no. of acceptable Defect	A. Zone Maximum 2 minor non-conformities per one unit. Defect distance: each point to be separated over 10mm B. Zone It is acceptable when it is no trouble for quality and assembly in customer's end product.	

10.3 Reliability of LCM

Reliability test condition:

Item	Condition	Time (hrs)	Assessment
High temp. Storage	80°C	48	
High temp. Operating	70°C	48	No abnormalities
Low temp. Storage	-30°C	48	in functions
Low temp. Operating	-20°C	48	and appearance
Humidity	40°C/ 90%RH	48	
Temp. Cycle	0° C ← 25° C $\rightarrow 50^{\circ}$ C (30 min ← 5 min \rightarrow 30min)	10cycles	

Recovery time should be 24 hours minimum. Moreover, functions, performance and appearance shall be free from remarkable deterioration within 50,000 hours under ordinary operating and storage conditions room temperature (20±8°C), normal humidity (below 65% RH), and in the area not exposed to direct sun light.

11.4 PRECAUTION FOR USING LCD/LCM

LCD/LCM is assembled and adjusted with a high degree of precision. Do not attempt to make any alteration or modification. The followings should be noted.

GENERAL PRECAUTIONS:

- LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol, ethyl alcohol or trichlorotriflorothane, do not use water, ketone or aromatics and never scrub hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not make any modification on the PCB without consulting USMP
- When mounting a LCM, make sure that the PCB is not under any stress such as bending or twisting.
 Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- 6. Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels and also cause rainbow on the display.
- Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal spreads to skin or clothes, wash it off immediately with soap and water.

STATIC ELECTRICITY PRECAUTIONS:

- CMOS-LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into
 contact with the module.
- Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.

- 3. Do not touch the connection terminals of the display with bare hand; it will cause disconnection or defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.
- 5. Only properly grounded soldering irons should be used.
- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches.
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

SOLDERING PRECAUTIONS:

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.
- 3. Soldering temperature: 280°C±10°C
- 4. Soldering time: 3 to 4 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7. Flux residue should be removed.

OPERATION PRECAUTIONS:

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse
 waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified
 operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.
- Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.
- 7. For long-term storage over 40°C is required, the relative humidity should be kept below 60%, and avoid direct sunlight.

Los Angeles + Austin + New York + Orlando + Shenzhen

(800) 741-7755

www.usmicroproducts.com

Displays

US Micro Products is an industrial distributor specializing in engineered display solutions. We dedicate ourselves to providing the best in displays for the medical, industrial, gaming, automotive, aerospace, military, and consumer markets.

OLEDs

TFT Displays

Open Frame Monitors

Passive LCDs

Multitouch

As a customer, you benefit from our expert knowledge, support and service which allow quick selection and design-in of the best display for your application. On hand stock and demo boards facilitate quick access and evaluation to get you going fast. Our technical sales staff and experienced design engineers provide answers to your questions as well as engineered solutions to solve your display needs.


Peripheral Devices

Our full line of peripheral devices includes keyboards, trackballs, and printers. These rugged industrial products are designed to meet your demanding requirements and are available as both standard and custom solutions.

Keyboards

Trackballs Aerospace Trackballs

Joysticks

Printers

