

# LCD PRODUCT SPECIFICATION

| PART NUMBER: | USMPG-TQ128128C-TZYYH-P1                                              |
|--------------|-----------------------------------------------------------------------|
| DESCRIPTION: | 128x128 Graphic LCD; STN Y/G Display<br>Mode; Transflective, Positive |
|              | with Yellow-Green LED Backlight and<br>6 O'Clock Viewing Direction.   |

| ISSUE DATE           | APPROVED BY                                                                          | CHECKED BY                                                                             | PREPARED BY                                          |
|----------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|
|                      | (Customer Use Only)                                                                  |                                                                                        |                                                      |
|                      |                                                                                      |                                                                                        |                                                      |
| PROPRIETARY<br>NOTE: | THIS SPECIFICATION IS THE PROPERTY C<br>COPIED WITHOUT THE WRITTEN PERMI<br>US MICRO | OF US MICRO PRODUCTS AND SH<br>SSION OF US MICRO PRODUCTS<br>PRODUCTS UPON ITS REQUEST | IALL NOT BE REPRODUCED OR<br>AND MUST BE RETURNED TO |

www.usmicroproducts.com

CONFIDENTIAL



#### 1.Features

- a) 128x128 dots graphic LCD module
- b) Built-in controller (T6963C or Equivalent)
- c) Low power consumption
- d) Easy interface with 8-bit MPU
- e) +5V power supply
- f) 1/128 duty cycle
- g) Display mode: STN (Yellow-Green), positive, transflective
- h) View andgle: 6:00
- i) LED sidelight: Yellow-Green color
- j) Building negative voltage

# 2. Outline dimension



# 3. Absolute maximum ratings

| ltem                        | Symbol  |      | Unit |         |   |
|-----------------------------|---------|------|------|---------|---|
| Power voltage               | Vdd-Vss | -0.3 | -    | 7.0     | V |
| Input voltage               | VIN     | -0.3 | -    | VDD+0.3 | v |
| Operating temperature range | Тор     | -20  | -    | +70     | ŝ |
| Storage temperature range   | Tst     | -30  | -    | +80     | C |





# 4.Block diagram

# a nin daaarir

| ( |   | ) |  |
|---|---|---|--|
| ( |   | ) |  |
|   |   | 2 |  |
|   | T | 1 |  |
| Ţ |   | J |  |
| Γ | I | 1 |  |
| 4 |   |   |  |
|   |   |   |  |
|   | C | > |  |
| Г |   |   |  |

| Pin<br>no. | Symbol  | External connection | Function                       |  |  |  |
|------------|---------|---------------------|--------------------------------|--|--|--|
| 1          | FG      |                     | Frame ground                   |  |  |  |
| 2          | Vss     |                     | Signal ground for LCM (GND)    |  |  |  |
| 3          | Vdd     | Power supply        | Power supply for logic for LCM |  |  |  |
| 4          | Vo      |                     | Operating voltage for LCD      |  |  |  |
| 5          | /WR     | MPU                 | MPU Write enable signal        |  |  |  |
| 6          | /RD     | MPU                 | Read enable signal             |  |  |  |
| 7          | /CE     | MPU                 | Chip enable signal             |  |  |  |
| 8          | C/D     | MPU                 | H: Instruction L: Data         |  |  |  |
| 9          | /RST    | MPU                 | Reset signal                   |  |  |  |
| 10~17      | DB0~DB7 | MPU                 | Data bus line                  |  |  |  |
| 18         | FS      | MPU                 | Font selection                 |  |  |  |
| 19         | А       | RKL nowor supply    | Power supply for BKL(Anode)    |  |  |  |
| 20         | К       |                     | Power supply for BKL(GND)      |  |  |  |

#### CONTRAST ADJUST



Building DC/DC

VDD~V0: LCD Driving voltage VR: 10k~20k



# **6.Optical characteristics**



# STN type display module (Ta=25°C, VDD=5.0V)

| Item                 | Symbol                 | Condition | Min. | Тур. | Max. | Unit |
|----------------------|------------------------|-----------|------|------|------|------|
| Viewing angle        | θ 1                    |           |      | 20   |      |      |
|                      | θ2                     | C >3      |      | 40   |      | dog  |
|                      | Φ1                     | Or≠J      |      | 35   |      | uey  |
|                      | Φ2                     |           |      | 35   |      |      |
| Contrast ratio       | Cr                     |           | -    | 10   | -    | -    |
| Response time (rise) | esponse time (rise) Tr |           | -    | 200  | 250  | 20   |
| Response time (fall) | Tr                     | -         | -    | 300  | 350  | 1115 |

# **8.Electrical characteristics**

#### DC characteristics

| Parameter                | Symbol           | Conditions                    | Min. | Тур. | Max. | Unit |
|--------------------------|------------------|-------------------------------|------|------|------|------|
| Supply voltage for LCD   | $V_{DD}$ - $V_0$ | Ta =25℃                       |      | 16.5 |      | V    |
| Input voltage            | Vdd              |                               | 4.7  | 5.0  | 5.5  |      |
| Supply current           | DD               | Ta=25℃, V <sub>DD</sub> =5.0V |      | 20   | _    | mA   |
| Input leakage current    | LKG              |                               |      | _    | 1.0  | uA   |
| "H" level input voltage  | Vн               |                               | 2.2  | _    | Vdd  |      |
| "L" level input voltage  | V⊾               | Twice initial value or less   | 0    | _    | 0.6  |      |
| "H" level output voltage | Vон              | LOH=-0.25mA                   | 2.4  |      |      | V    |
| "L" level output voltage | Vol              | LOH=1.6mA                     | _    |      | 0.4  |      |
| Backlight supply voltage | VF               |                               |      | 5.0  | _    |      |
| Backlight supply current | I                | Ta =25℃ ,R=20 ohm             | _    | 50   | _    | mA   |

# > Switching characteristics

#### (Ta=25℃, VDD=5.0V)

| ltem                      | Symbol        | Test conditions | Min. | Тур. | Max. | Unit |
|---------------------------|---------------|-----------------|------|------|------|------|
| C/D set-up time           | Tcds          |                 | 100  |      |      |      |
| C/D hold time             | Tw            |                 | 10   |      | _    |      |
| /CE, /RD, /WR pulse width | Tce, Trd, Twr |                 | 80   |      | _    |      |
| Data set-up time          | Tds           | —               | 80   | _    |      | ns   |
| Data hold time            | Tdh           |                 | 40   |      | _    |      |
| Access time               | Tacc          |                 |      |      | 150  |      |
| Output hold time          | Toh           |                 | 10   |      | 50   |      |



#### Bus timing diagram



# 9.Flowchart of communications with MPU

# Status read

A status check must be performed before data is read or written. The status word format is as follows:

| /RD | /WR | /CE | C/D | STA7 | STA5 | STA5 | STA4 | STA3 | STA2 | STA1 | STA0 |
|-----|-----|-----|-----|------|------|------|------|------|------|------|------|
| 0   | 1   | 0   | 1   | DB7  | DB6  | DB5  | DB4  | DB3  | DB2  | DB1  | DB0  |

| STA0 | Check command execution capability          | 0: disable     | 1:enable          |
|------|---------------------------------------------|----------------|-------------------|
| STA1 | Check data read / write capability          | 0: disable     | 1:enable          |
| STA2 | Check auto mode data read capability        | 0: disable     | 1:enable          |
| STA3 | Check auto mode data write capability       | 0: disable     | 1:enable          |
| STA4 | Not used                                    |                |                   |
| STA5 | Check controller operation capability       | 0: disable     | 1:enable          |
| STA6 | Error flag. Used for screen peek and screen | 0: no error    | 1: error          |
|      | copy commands.                              |                |                   |
| STA7 | Check the blink condition                   | 0: display off | 1: normal display |
|      |                                             |                |                   |

Notes:

- 1. It is necessary to check STA0 and STA1 at the same time. There is a possibility of erroneous operation due to a hardware interrupt.
- 2. For most modes STA0 / STA1 are used as a status check.
- 3. STA2 and STA3 are valid in auto mode; STA0 and STA1 are invalid.
- 4. When using the STA7=0 command, a status read must be performed. If a status check is not carried out, the T6963C cannot operate normally, even after a delay time. The hardware interrupt occurs during the address calculation period (at the end of each line). If a STA7=0 command is sent to the T6963c during this period, the T6963C enters wait status. If a status check is not carried out in this state before the next command is sent, there is the possibility that the command or data will not be received.

![](_page_5_Picture_0.jpeg)

![](_page_5_Picture_1.jpeg)

#### Setting data

When using the T6963C, first set the data, and then set the command. Procedure for sending a command:

#### a). The case of 1 data

b) the case of 2 data

![](_page_5_Figure_6.jpeg)

Note:

When sending more than two data, the last datum (or last two data) is valid.

![](_page_6_Picture_0.jpeg)

# **10.Command definitions**

| Command           | Code     | D1          | D2           | Function                       |
|-------------------|----------|-------------|--------------|--------------------------------|
|                   | 00100001 | X address   | Y address    | Set cursor pointer             |
| Registers setting | 00100010 | Data        | 00H          | Set offset register            |
|                   | 00100100 | Low address | High address | Set address pointer            |
|                   | 0100000  | Low address | High address | Set text home address          |
| Set control word  | 01000001 | columns     | 00H          | Set text area                  |
|                   | 01000010 | Low address | High address | Set graphic home address       |
|                   | 01000011 | columns     | 00H          | Set graphic area               |
|                   | 1000X000 |             |              | OR mode                        |
|                   | 1000X001 |             |              | EXOR mode                      |
| Mada cat          | 1000X011 |             |              | AND mode                       |
| wode set          | 1000X100 |             |              | Text attribute mode            |
|                   | 10000XXX |             |              | Internal CG ROM mode           |
|                   | 10001XXX |             |              | External CG RAM mode           |
|                   | 10010000 |             |              | Display off                    |
|                   | 1001XX10 |             |              | Cursor on, blink off           |
| Display mode      | 1001XX11 |             |              | Cursor on, blink on            |
| Display mode      | 100101XX |             |              | Text on, graphic off           |
|                   | 100110XX |             |              | Text off, graphic on           |
|                   | 100111XX |             |              | Text on, graphic on            |
|                   | 10100000 |             |              | 1- Line cursor                 |
|                   | 10100001 |             |              | 2- Line cursor                 |
|                   | 10100010 |             |              | 3- Line cursor                 |
| Cursor pattern    | 10100011 |             |              | 4- Line cursor                 |
| select            | 10100100 |             |              | 5- Line cursor                 |
|                   | 10100101 |             |              | 6- Line cursor                 |
|                   | 10100110 |             |              | 7- Line cursor                 |
|                   | 10100111 |             |              | 8- Line cursor                 |
| Data auto read /  | 10110000 |             |              | Set data auto write            |
| write             | 10110001 |             |              | Set data auto read             |
| WINC              | 10110010 |             |              | Auto reset                     |
|                   | 11000000 | Data        |              | Data write and increment ADP   |
|                   | 11000001 |             |              | Data read and increment ADP    |
| Data read / write | 11000010 | Data        |              | Data write and decrement ADP   |
| Data read / write | 11000011 |             |              | Data read and decrement ADP    |
|                   | 11000100 | Data        |              | Data write and no variable ADP |
|                   | 11000101 |             |              | Data read and no variable ADP  |
| Screen peek       | 11100000 |             |              | Screen peek                    |
| Screen copy       | 11101000 |             |              | Screen copy                    |
|                   | 11110XXX |             |              | Bit reset                      |
|                   | 11111XXX |             |              | Bit set                        |
|                   | 1111X000 |             |              | Bit 0 (LSB)                    |
|                   | 1111X001 |             |              | Bit 1                          |
| Bit set / reset   | 1111X010 |             |              | Bit 2                          |
|                   | 1111X011 |             |              | Bit 3                          |
|                   | 1111X100 |             |              | Bit 4                          |
|                   | 1111X101 |             |              | Bit 5                          |
|                   | 1111X110 |             |              | Bit 6                          |
|                   | 1111X111 |             |              | Bit 7(MSB)                     |

#### Note:

When an MPU program with checking the busy flag (DB7) is made, it must be necessary 1/2fosc is necessary for executing the next instruction by the falling edge of the "E" signal after the busy flag (DB7) goes to "Low".

# X: invalid

Contents

1). Setting registers

![](_page_7_Picture_1.jpeg)

| D1 | D2 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| Х  | Х  | 0   | 0   | 1   | 0   | 0   | N2  | N1  | N0  |

| CODE     | HEX. | FUNCTION            | D1       | D2        |
|----------|------|---------------------|----------|-----------|
| 00100001 | 21H  | Set cursor pointer  | X ADRS   | Y ADRS    |
| 00100010 | 22H  | Set offset register | DATA     | 00H       |
| 00100100 | 24H  | Set address pointer | Low ADRS | High ADRS |

#### Set cursor pointer

X ADRS and Y ADRS specify the position or the cursor. The cursor position can only be moved by this command. Data read / write from the MPU never changes the cursor pointer. X ADRS and Y ADRS are specified as follows.

X ADRS 00H to 4FH (lower 7 bits are valid)

Y ADRS 00H to 1FH (lower 5 bits are valid)

| a) Single-scan |            | b) Dual-sca | n                        |
|----------------|------------|-------------|--------------------------|
| <b>X ADRS</b>  | 00H to 4FH | XADRS       | 00H to 4FH               |
| Y ADRS         | 00H to 0FH | Y ADRS      | 00H to 0FH(upper screen) |
|                |            | Y ADRS      | 10H to 1FH(lower screen) |

#### Set offset register

The offset register is used to determine the external character generator RAM area. The T6963C has a 16-bit address bus as follows:

| MSB                        |         |         |          |     |     |     |     |         | LSB |
|----------------------------|---------|---------|----------|-----|-----|-----|-----|---------|-----|
| AD15 AD14 AD13 AD12 AD11 A | D10 AD9 | AD8 AD7 | AD6      | AD5 | AD4 | AD3 | AD2 | AD1     | AD0 |
| Offset register data       |         | Chara   | cter coc | le  |     |     | L   | ine sca | an  |

T6963C assign external character generator, when character code set 80H to FFH in using internal character generator. Character code 00H to 80H assign External character generator, when External generator mode.

The senior five bits define the start address in external memory of the CGRAM area. The next eight bits represent the character code of the character. In internal CGRAM mode, character codes 00H to 7FH represent the predefined "internal" CGRAM characters, and codes 80H to FFH represent the user's own "external" characters. In external CGRAM mode, all 256 codes from indicate one of the eight rows of eight dots that define the character's shape.

The relationship between display RAM address and offset register

#### > Set address pointer

The set address pointer command is used to indicate the start address for writing to (or reading from) external RAM.

The flowchart for set address pointer command:

![](_page_8_Picture_1.jpeg)

![](_page_8_Figure_2.jpeg)

# 2). Set control word

| D1 | D2 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| Х  | Х  | 0   | 1   | 0   | 0   | 0   | 0   | N1  | N0  |

| CODE     | HEX | FUNCTION                 | D1          | D2           |
|----------|-----|--------------------------|-------------|--------------|
| CODL     |     | TUNCTION                 |             | DZ           |
| 0100000  | 40H | Set text home address    | Low address | High address |
| 01000001 | 41H | Set text area            | Columns     | 00H          |
| 01000010 | 42H | Set graphic home address | Low address | High address |
| 01000000 | 43H | Set graphic area         | Columns     | 00H          |

The home address and column size are defined by this command.

#### Set text home address

The starting address in the external display RAM for text display is defined by this command.

The text home address indicates the leftmost and uppermost position.

The relationship between external display RAM address and display position

| TH          | TH +CL         |
|-------------|----------------|
| TH+TA       | TH+TA+CL       |
| (TH+TA)+TA  | TH+2TA+CL      |
| (TH+2TA)+TA | TH+3TA+CL      |
| /           |                |
| TH+(N-1) TA | TH+(N-1) TA+CL |

TH: text home address

TA: text area number (columns)

CL: columns ate fixed by hardware (pin-programmable)

#### Set graphic home address

The starting address of the external display RAM used for graphic display is defined by this command. The graphic home address indicates the leftmost and uppermost position.

![](_page_9_Picture_1.jpeg)

The relationship between external display RAM address and display position

| GH             | GH +CL           |
|----------------|------------------|
| GH+GA          | GH + GA +CL      |
| (GH+ GA)+ GA   | GH +2 GA +CL     |
| (GH +2 GA)+ GA | GH +3 GA +CL     |
| /              |                  |
| GH +(N-1) GA   | GH +(N-1) GA +CL |

GH: Graphic home address

GA: Graphic area number (columns)

CL: columns ate fixed by hardware (pin-programmable)

#### Set text area

The display columns are defined by the hardware setting. This command can be used to adjust the columns of the display.

#### Set graphic area

The display columns are defined by the hardware setting. This command can be used to adjust the columns of the graphic display.

If the graphic area setting is set to match the desired number of columns on the LCD, the addressing scheme will be automatically modified so that the start address of each line equals the end address of the previous line +1.

#### 3). Mode set

| CODE     | FUNCTION                | OPERAND |
|----------|-------------------------|---------|
| 1000X000 | OR Mode                 |         |
| 1000X001 | EXOR Mode               |         |
| 1000X011 | AND Mode                | —       |
| 1000X100 | TEXT Attribute Mode     |         |
| 10000XXX | Internal character Mode |         |
| 10001XXX | External character Mode |         |

The display mode is defined by this command. The display mode does not change until the next command is sent. The logical OR, EXOR, AND of text or graphic display can be displayed.

In internal character generator mode, character codes 00H to 7FH are assigned to the built-in character generator ROM. The character codes 80H to FFH are automatically assigned to the external character generator RAM.

**NOTE:** attribute functions can only be applied to text display, since the attribute data is placed in the graphic RAM area.

#### Attribute function

The attribute operations are reverse display, character blink and inhibit. The attribute data is written into the graphic area, which was defined by the set control word command. Only text display is possible in attribute function mode; graphic display is automatically disabled. However, the display mode command must be used to turn both text and graphic on in order for the attribute function to be available.

The attribute data for each character in the text area is written to the same address in the graphic area. The attribute function is defined as follows.

#### Attribute RAM 1byte

X X X X DB3 DB2 DB1 DB0

| DB3 | DB2 | DB1 | DB0                       | FUNCTION                 |
|-----|-----|-----|---------------------------|--------------------------|
| 0   | 0   | 0   | 0                         | Normal display           |
| 0   | 1   | 0   | 1 Reverse display         |                          |
| 0   | 0   | 1   | 1                         | Inhibit display          |
| 1   | 0   | 0   | 0 Blink of normal display |                          |
| 1   | 1   | 0   | 1                         | Blink of reverse display |
| 1   | 0   | 1   | 1                         | Blink of inhibit display |

#### 4). Display mode

| CODE     | FUNCTION             | OPERAND |
|----------|----------------------|---------|
| 10010000 | Display off          |         |
| 1001xx10 | Cursor on, blink off |         |
| 1001xx11 | Cursor on, blink on  |         |
| 100101xx | Text on, graphic off |         |
| 100110xx | Text off, graphic on |         |
| 100111xx | Text on, graphic on  |         |

| 1                    | 0        | 0     | 1     | DB3  | DB2    | DB1 | DB0 |
|----------------------|----------|-------|-------|------|--------|-----|-----|
|                      |          |       |       |      |        |     |     |
| DB0: (               | cursor l | olink | on    | : 1  | off: 0 |     |     |
| DB1: cursor display  |          |       | on: 1 |      | off: 0 |     |     |
| DB2: text display    |          |       | on: 1 |      | off: 0 |     |     |
| DB3: graphic display |          |       | or    | n: 1 | off: 0 |     |     |

# NOTE:

- It is necessary to turn on "text display" and "graphic display" in the following cases.
- a) Combination of text / graphic display
- b) Attribute function

# 5). Cursor pattern select

| CODE     | FUNCTION      | OPERAND |
|----------|---------------|---------|
| 10100000 | 1-line cursor |         |
| 10100001 | 2-line cursor |         |
| 10100010 | 3-line cursor |         |
| 10100011 | 4-line cursor |         |
| 10100100 | 5-line cursor |         |
| 10100101 | 6-line cursor |         |
| 10100110 | 7-line cursor |         |
| 10100111 | 8-line cursor |         |

When cursor display is on, this command selects the cursor pattern in the range 1 line to 8 lines. The cursor pointer set command defines the cursor address.

![](_page_11_Picture_1.jpeg)

#### 6). Data auto read / write

| CODE     | HEX. | FUNCTION            | OPERAND |
|----------|------|---------------------|---------|
| 10110000 | B0H  | Set data auto write |         |
| 10110001 | B1H  | Set data auto read  |         |
| 10110010 | B2H  | Auto rest           |         |

The command is convenient for sending a full screen of data from the external display RAM. After setting auto mode, a data write (or read) command is need not be sent between each datum. A data auto write (or read) command must be send after a set address pointer command. After this command, the address pointer is automatically incremented by 1 after each datum. In auto mode, the T6963C cannot accept any other commands.

The auto reset command must be sent to the T6963C after all data has been sent, to clear auto mode.

NOTE: A status check for auto mode (STA2, STA3 should be checked between sending of each datum. Auto reset should be performed after checking STA3=1(STA2=1)). Refer to the following flowchart.

![](_page_11_Figure_7.jpeg)

#### 7). Data read / write

| CODE     | HEX. | FUNCTION                       | OPERAN<br>D |
|----------|------|--------------------------------|-------------|
| 11000000 | C0H  | Data write and increment ADP   | Data        |
| 11000001 | C1H  | Data read and increment ADP    |             |
| 11000010 | C2H  | Data write and decrement ADP   | Data        |
| 11000011 | C3H  | Data read and decrement ADP    |             |
| 11000100 | C4H  | Data write and no variable ADP | Data        |
| 11000101 | C5H  | Data read and no variable ADP  |             |

This command is used for writing data from the MPU to external display RAM, and reading data from external display RAM to the MPU. Data write /data read should be executed after

![](_page_12_Picture_1.jpeg)

setting address using ser address pointer command. The address pointer can be automatically incremented or decremented using this command.

Note: this command is necessary for each 1-byte datum. Refer to the following flowchart.

![](_page_12_Figure_4.jpeg)

#### 8). Screen peek

| CODE     | HEX. | FUNCTION    | OPERAND |
|----------|------|-------------|---------|
| 11100000 | E0H  | Screen peek |         |

This command is used to transfer 1 byte of displayed data to the data stack; this byte can then be read from the MPU by data access. The logical combination of text and graphic display data on the LCD screen can be read by read by this command.

The status (STA6) should be checked just after the screen peek command. If the address determined by the set address pointer command is not in the graphic area, this command is ignored and a status flag (STA6) is set.

Refer to the following flowchart.

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

![](_page_13_Figure_2.jpeg)

Note: this command is available when hardware column number and software column number are the same. Hardware column number is related to MD2 and MD3 setting. Software column number is related to ser text area and set graphic area command.

#### 9). Screen copy

| CODE     | HEX. | FUNCTION    | OPERAND |
|----------|------|-------------|---------|
| 11101000 | E8H  | Screen copy |         |

This command copies a raster line of data to the graphic area. The start point must be set using the set address pointer command. Note:

If the attribute function is being used, this command is not available. (With attribute data is graphic area data.)

With dual-scan, this command cannot be used (because the T6963C cannot separate the upper screen data and lower screen data). Refer to the following flowchart.

![](_page_13_Figure_9.jpeg)

This command is available when hardware column number and software column number

![](_page_14_Picture_0.jpeg)

are the same. Hardware column number is related to MD2 and MD3 setting. Software column number is related to set text area and set graphic area command.

#### 10). Bit set /reset

| CODE     | FUNCTION     | OPERAND |
|----------|--------------|---------|
| 11110XXX | Bit reset    |         |
| 11111XXX | Bit set      |         |
| 1111X000 | Bit 0 (LSB0) |         |
| 1111X001 | Bit 1        |         |
| 1111X010 | Bit 2        |         |
| 1111X011 | Bit 3        |         |
| 1111X100 | Bit 4        |         |
| 1111X101 | Bit 5        |         |
| 1111X110 | Bit 6        |         |
| 1111X111 | Bit 7 (LSB0) |         |

This command use to set or reset a bit of the byte specified by the address pointer. Only one bit can be set / reset at a time. Refer to the following flowchart.

![](_page_14_Figure_6.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

#### **11.Quality Specifications**

#### **11.1 STANDARD OF THE PRODUCT APPEARANCE TEST**

Manner of appearance test: The inspection should be performed in using  $20W \ge 2$  fluorescent lamps. Distance between LCM and fluorescent lamps should be 100 cm or more. Distance between LCM and inspector eyes should be 25 cm or more.

Viewing direction for inspection is 35° from vertical against LCM.

![](_page_15_Figure_6.jpeg)

Definition of zone:

LCM

![](_page_15_Figure_8.jpeg)

A Zone: Active display area (minimum viewing area).

B Zone: Non-active display area (outside viewing area).

#### **11.2 SPECIFICATION OF QUALITY ASSURANCE**

AQL inspection standard

Sampling method: GB2828-87, Level II, single sampling

Defect classification (Note: \* is not including)

| Cl    | assify        | Item                         |     | AQL  |
|-------|---------------|------------------------------|-----|------|
| Major | Display state | Short or open circuit        | 1   | 0.65 |
|       |               | LC leakage                   |     |      |
|       |               | Flickering                   |     |      |
|       |               | No display                   |     |      |
|       |               | Wrong viewing direction      |     |      |
|       |               | Contrast defect (dim, ghost) | 2   |      |
|       |               | Backlight                    | 1,8 |      |
|       | Non-display   | Flat cable or pin reverse    | 10  |      |
|       |               | Wrong or missing component   | 11  |      |
| Minor | Display       | Background color deviation   | 2   | 1.0  |
|       | state         | Black spot and dust          | 3   |      |
|       |               | Line defect, Scratch         | 4   |      |
|       |               | Rainbow                      | 5   |      |
|       |               | Chip                         | 6   |      |
|       |               | Pin hole                     | 7   |      |
|       |               | Protruded                    | 12  |      |
|       | Polarizer     | Bubble and foreign material  | 3   |      |
|       | Soldering     | Poor connection              | 9   |      |
|       | Wire          | Poor connection              | 10  |      |
|       | TAB           | Position, Bonding strength   | 13  |      |

www.usmicroproducts.com

![](_page_16_Picture_0.jpeg)

#### Note on defect classification

| No. | Item                                                                           | Criterion                                                                                                |                   |                                                                                                          |                                             |
|-----|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1   | Short or open circuit                                                          | Not allow                                                                                                |                   |                                                                                                          |                                             |
|     | LC leakage                                                                     |                                                                                                          |                   |                                                                                                          |                                             |
|     | Flickering                                                                     |                                                                                                          |                   |                                                                                                          |                                             |
|     | No display                                                                     |                                                                                                          |                   |                                                                                                          |                                             |
|     | Wrong viewing direction                                                        |                                                                                                          |                   |                                                                                                          |                                             |
|     | Wrong Back-light                                                               |                                                                                                          |                   |                                                                                                          |                                             |
| 2   | Contrast defect                                                                |                                                                                                          |                   | Refer to approva                                                                                         | l sample                                    |
|     | Background color deviation                                                     |                                                                                                          |                   |                                                                                                          |                                             |
| 3   | Point defect,<br>Black spot, dust<br>(including Polarizer)<br>$\phi = (X+Y)/2$ | Y<br>X                                                                                                   |                   | Point<br>Size<br>$\phi \leq 0.10$<br>$0.10 < \phi \leq 0.15$<br>$0.15 < \phi \leq 0.25$<br>$\phi > 0.25$ | Acceptable Qty.<br>Disregard<br>2<br>1<br>0 |
| 4   | Line defect,<br>Scratch                                                        | $ \begin{array}{c} \downarrow \\ \uparrow \\ \downarrow \\ \downarrow \\ \downarrow \\ L \end{array} W $ | L<br>3.0><br>2.0> | Line<br>0.05>W<br>L 0.1>W>0.05<br>L 0.15>W>0.1                                                           | Acceptable Qty.<br>Disregard<br>Unit: mm    |
| 5   | Rainbow                                                                        | Not more than two color changes across the viewing area.                                                 |                   |                                                                                                          |                                             |

CONFIDENTIAL

![](_page_17_Picture_1.jpeg)

| No | Item                                                                                   | Criterion                                                                                                                                                                                                                           |
|----|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | Chip<br>Remark:<br>X: Length direction<br>Y: Short direction<br>Z: Thickness direction | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                              |
|    | t: Glass thickness<br>W: Terminal width<br>L: Glass length                             | $\begin{array}{c c} X & Y \\ \hline \\ X & Y \\ \hline \\ Z \\ \end{array}$ Acceptable criterion $\begin{array}{c c} X & Y & Z \\ \hline \\ \hline \\ \hline \\ Z \\ \end{array}$                                                   |
|    |                                                                                        | $Y \xrightarrow{\qquad} X \xrightarrow{\qquad} X$ Acceptable criterion $X \xrightarrow{\qquad} Y \xrightarrow{\qquad} Z \xrightarrow{\qquad} \leq 3 \xrightarrow{\qquad} \leq 2 \xrightarrow{\qquad} \leq t$ shall not reach to ITO |
|    |                                                                                        | $W_{\underline{y}} \xrightarrow{Y} \psi$ Acceptable criterion $X \xrightarrow{Y} Z$ $X \xrightarrow{Y} Z$ Disregard $\leq 0.2 \leq t$                                                                                               |
|    |                                                                                        | $\begin{array}{c c} & Y & Acceptable criterion \\ \hline X & Y & Z \\ \hline \hline X & Z \\ \hline \end{array}$                                                                                                                    |

![](_page_18_Picture_1.jpeg)

| No. | Item                                                        | Criterion                                                                                                                                                                                                                                                                                        |  |  |
|-----|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7   | Segment<br>pattern<br>W = Segment width<br>$\phi = (X+Y)/2$ | (1) Pin hole<br>$\phi < 0.10 \text{ mm} \text{ is acceptable.}$<br>$Y \xrightarrow{Y} \xrightarrow{Y} Y$<br>$W \xrightarrow{Y} \xrightarrow{Y} Y$<br>$W \xrightarrow{Y} \xrightarrow{Y} Y$<br>$\psi \leq 1/4W$<br>$\psi \leq 1/2W$<br>1<br>$\psi > 1/2W$<br>0<br>Unit: mm                        |  |  |
| 8   | Back-light                                                  | <ul> <li>(1) The color of backlight should be in match with the specification.</li> <li>(2) Not allow flickering</li> </ul>                                                                                                                                                                      |  |  |
| 9   | Soldering                                                   | (1) Not allow heavy dirty and solder ball on PCB.<br>(The size of dirty refer to point and dust defect)<br>(2) Over 50% of lead should be soldered on Land.                                                                                                                                      |  |  |
| 10  | Wire<br>PCB                                                 | <ol> <li>(1) Copper wire should not be rusted</li> <li>(2) Not allow crack on copper wire connection.</li> <li>(3) Not allow reversing the position of the flat cable.</li> <li>(4) Not allow exposed copper wire inside the flat cable.</li> <li>(1) Not allow screw rust or damage.</li> </ol> |  |  |
|     |                                                             | (2) Not allow missing or wrong putting of component.                                                                                                                                                                                                                                             |  |  |

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

# **11.3 RELIABILITY OF LCM**

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

Reliability test condition:

| Item                 | Condition                                                                                                     | Time (hrs) | Assessment       |
|----------------------|---------------------------------------------------------------------------------------------------------------|------------|------------------|
| High temp. Storage   | 80°C                                                                                                          | 48         |                  |
| High temp. Operating | 70°C                                                                                                          | 48         | No abnormalities |
| Low temp. Storage    | -30°C                                                                                                         | 48         | in functions     |
| Low temp. Operating  | -20°C                                                                                                         | 48         | and appearance   |
| Humidity             | 40°C/ 90%RH                                                                                                   | 48         |                  |
| Temp. Cycle          | $0^{\circ}C \leftarrow 25^{\circ}C \rightarrow 50^{\circ}C$<br>(30 min $\leftarrow 5 min \rightarrow 30min$ ) | 10cycles   |                  |

Recovery time should be 24 hours minimum. Moreover, functions, performance and appearance shall be free from remarkable deterioration within 50,000 hours under ordinary operating and storage conditions room temperature  $(20\pm8^{\circ}C)$ , normal humidity (below 65% RH), and in the area not exposed to direct sun light.

#### **11.4 PRECAUTION FOR USING LCD/LCM**

LCD/LCM is assembled and adjusted with a high degree of precision. Do not attempt to make any alteration or modification. The followings should be noted.

#### **GENERAL PRECAUTIONS:**

- 1. LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- 2. The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol, ethyl alcohol or trichlorotriflorothane, do not use water, ketone or aromatics and never scrub hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not make any modification on the PCB without consulting USMP.
- 5. When mounting a LCM, make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- 6. Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels and also cause rainbow on the display.
- 7. Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal spreads to skin or clothes, wash it off immediately with soap and water.

#### STATIC ELECTRICITY PRECAUTIONS:

- 1. CMOS-LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into contact with the module.
- 2. Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.
- 3. Do not touch the connection terminals of the display with bare hand; it will cause disconnection or defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.

#### www.usmicroproducts.com

![](_page_20_Picture_23.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches.
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

#### **SOLDERING PRECAUTIONS:**

US Micro Products Electronic Products for the OEM

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.
- 3. Soldering temperature:  $280^{\circ}C \pm 10^{\circ}C$
- 4. Soldering time: 3 to 4 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7. Flux residue should be removed.

#### **OPERATION PRECAUTIONS:**

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- 2. Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.
- 6. Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.
- 7. For long-term storage over 40°C is required, the relative humidity should be kept below 60%, and avoid direct sunlight.

![](_page_22_Picture_0.jpeg)

# (800) 7<u>41-7755</u>

# www.usmicroproducts.com

# Displays

US Micro Products is an industrial distributor specializing in engineered display solutions. We dedicate ourselves to providing the best in displays for the medical, industrial, gaming, automotive, aerospace, military, and consumer markets.

![](_page_22_Figure_5.jpeg)

As a customer, you benefit from our expert knowledge, support and service which allow quick selection and design-in of the best display for your application. On hand stock and demo boards facilitate quick access and evaluation to get you going fast. Our technical sales staff and experienced design engineers provide answers to your questions as well as engineered solutions to solve your display needs.

# **Peripheral Devices**

Our full line of peripheral devices includes keyboards, trackballs, and printers. These rugged industrial products are designed to meet your demanding requirements and are available as both standard and custom solutions.

![](_page_22_Picture_9.jpeg)