

TFT **SPECIFICATION**

Size 12.3"	
Resolution 1920 x 720	
Brightness 700 cd/m ²	
Contrast 1000:1	
Viewing Angle 85/85/85	
Operating Temp30 ~ 85°C	

FOR ADDITIONAL INFORMATION PLEASE CONTACT:

		engineering@usmicroproducts.				
Issue Date	Approved by (customer use)	Checked by	Prepared by			

PROPRIETARY NOTE: THIS SPECIFICATION IS THE PROPERTY OF US MICRO PRODUCTS AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF US MICRO PRODUCTS AND MUST BE RETURNED TO US MICRO PRODUCTS UPON ITS REQUEST.

(800) 741-7755 www.usmicroproducts.com

TABLE OF CONTENTS

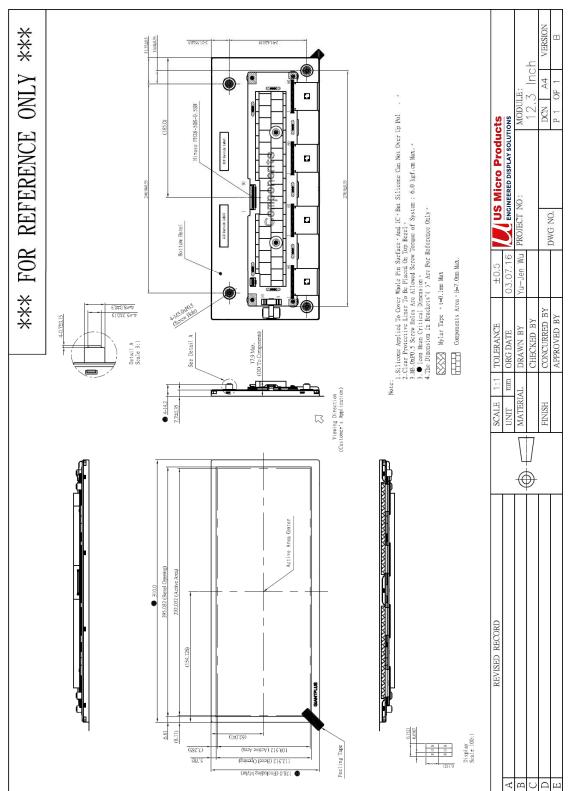
1.	GENERAL DESCRIPTION	5
2.	FEATURES	5
3.	MECHANICAL SPECIFICATION	5
4.	MECHANICALDIMENS	5
5.	MAXIMUM RATINGS	7
6.	ELECTRICAL CHARACTERISTICS	
7.	BACKLIGHT CHARACTERISTIC	
8.	MODULE FUNCTION DESCRIPTION	
_	.1. PIN Description	
-	.2. Function Description 1	
8	.3. AC electrical characteristics 1	
8	.4. Power on / off Sequence 1	5
9.	ELECTRO-OPTICAL CHARACTERISTICS	5
10.	RELIABILITY	3
1	0.1MTTF 1	8
1	0.2TESTS 1	8
1	0.3Color Performance 1	9
11.	INSPECTION CRITERIA 19	9
1	1.1.Inspection Conditions 1	9
1	1.2. Light Method 1	
	1.3. Classification Of Defects	
	1.4. Sampling & Acceptable Quality Level	
	1.5. Definition Of Inspection Area	
	ILLUSTRATION OF LCD DATE CODE	
13.	BARCODE RULE	2
14.	ROHSCOMPLIANT WARRANTY 23	3
15.	PRECAUTIONS FOR USE	3
1	5.1. Safety 2	23
1	5.2. Storage Conditions	
1	5.3. Installing LCD Module	23

16. REV	ISION HISTORY	27
15.6.	Warranty	27
	-	
15.5	Handling Precautions	24
15.4.	Precautions For Operation	24

1. GENERAL DESCRIPTION

USMP-T123-192072NDV-A0 is a Transmissive type color active matrix liquid crystal display (LCD), which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT LCD panel, driver IC, FPC and a Backlight unit.

2. FEATURES


Diaplay Mada	Transmissive Type
Display Mode	TFT LCD, Negative
Display Format	RGBStrip type
Interface	2 port LVDS
Viewing Direction	Free
Drive IC	Hx8255A*4, Hx8695H*1

3. MECHANICAL SPECIFICATION

Item	Specifications	Unit
Display Size	12.3	Inch
Dimensional outline	310 (W) × 128(H) × 7.7 (D)*	mm
Resolution	1920×3(R,G,B)×720	dot
Active area	292.032 (W) × 109.512 (H)	mm
Pixel pitch	0.152 (W) × 0.152 (H)	mm
Polarizer	AG	

* Exclude FPC

4. MECHANICAL DIMENSIONS

5. MAXIMUM RATINGS

If the operating condition exceeds the following absolute maximum ratings, the TFT LCD module may be damaged permanently.

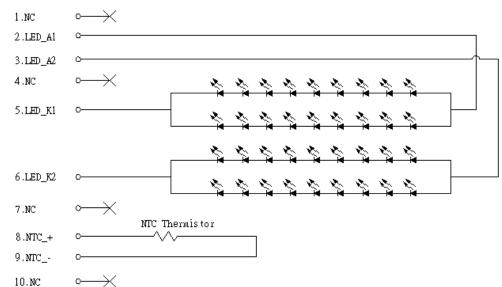
Items	Symbol	Val	ues	Unit	Noto	
items	Symbol	Min.	Max.	Unit	Note	
System Power Voltage	VDD33	-0.3	3.9	v		
Operation temperature	Тор	-30	85	°C		
Storage Temperature	Tst	-40	95	°C		
Humidity	-	-	90	%RH	Note 1	

Note :

- 1) All the voltages listed above are with respective to GND=0V $_{\circ}$
- 2) Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above \circ
- 3) Note1: $T_A \leq 40^{\circ}$ C Without dewing

6. ELECTRICAL CHARACTERISTICS

ltere		Queebal		الملا	Domork		
Item		Symbol	Min.	Тур.	Max.	Unit	Remark
Supply Volta	age	VDD	3.2	3.3	3.4	V	Note1
IDD		IDD	-	TBD	TBD	mA	Note1
Frame Rate		Fr		60		Hz	Note1
	H level	V _{IH}	0.7*VDD		VDD+0.3	V	Note1
Input Voltage	L Level	V _{IL}	GND-0.3		0.3*VDD	V	Note1
	H level	V _{OH}	VDD-0.4			V	Note1
Output t Voltage	L Level	V _{OL}	GND		GND+0.4	V	Note1


Note1: These supply & Input & Output Voltage base on IC data Sheet.

7. BACKLIGHT CHARACTERISTICS

lterer	Oursels al	Values			L Lucit	David	
ltem	Symbol	Min.	Тур.	Max.	Unit	Remark	
Power Consumption	P_{LED}	-	12.8		W		
LED Current	I _{AK}	-	200	-	mA		
LED Voltage	V _{AK}		3.5		V	I _{AK} =100mA/chain, 25℃	
LED life time (50%,MTTF)	-	-	10000	-	Hr		
Uniformity	-	-	80	-	%		

Backlight LED Circuit :

Note 1: GP suggest using constant current driving this backlight unit.

Note 2: The LED chip luminance decrease to be 50% of original

Note 3: For PWM driving only .

Conditions : Pulse width $T_w \leq 0.1$ ms, Duty ratio $\leq 1/10$

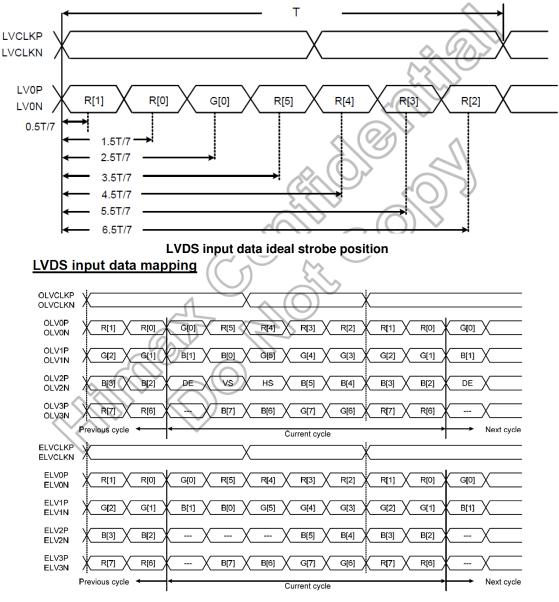
8. MODULE FUNCTION DESCRIPTION

8.1. PIN Description

Pin description

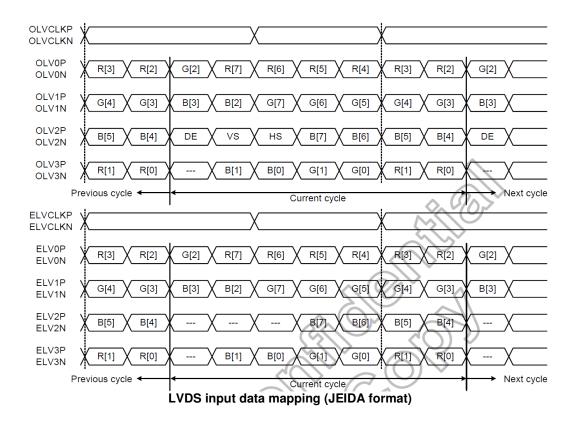
Pin	Symbol	Function
1	GND	Power ground
2	GND	Power ground
3	VDD	System power supply input +3.3V
4	VDD	System power supply input +3.3V
5	VDD	System power supply input +3.3V
6	GND	Power ground
7	NC	No connection
8	WP	Serial Interface chip enable signal for EEPROM.
9	SCLK	Serial Interface clock input for EEPROM.
10	SDAT	Serial Interface address and data input/output.
11	BISTEN	Enable bult-in self test (BIST) function. Default pull Low.
12	PWM	Backlight PWM AC signal, H level enable.
13	GND	Power ground
14	OLV0N	Receiver signal of LVDS Odd CH0(-)
15	OLV0P	Receiver signal of LVDS Odd CH0(+)
16	GND	Power ground
17	OLV1N	Receiver signal of LVDS Odd CH1(-)
18	OLV1P	Receiver signal of LVDS Odd CH1(+)
19	GND	Power ground
20	OLV2N	Receiver signal of LVDS Odd CH2(-)
21	OLV2P	Receiver signal of LVDS Odd CH2(+)
22	GND	Power ground
23	OLVCLKN	Receiver signal of LVDS Odd CLK(-)
24	OLVCLKP	Receiver signal of LVDS Odd CLK(+)
25	GND	Power ground
26	OLV3N	Receiver signal of LVDS Odd CH3(-)
27	OLV3P	Receiver signal of LVDS Odd CH3(+)
28	GND	Power ground

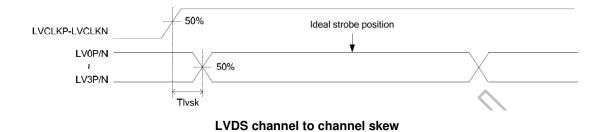
29	ELV0N	Receiver signal of LVDS Even CH0(-)
30	ELV0P	Receiver signal of LVDS Even CH0(+)
31	GND	Power ground
32	ELV1N	Receiver signal of LVDS Even CH1(-)
33	ELV1P	Receiver signal of LVDS Even CH1(+)
34	GND	Power ground
35	ELV2N	Receiver signal of LVDS Even CH2(-)
36	ELV2P	Receiver signal of LVDS Even CH2(+)
37	GND	Power ground
38	ELVCLKN	Receiver signal of LVDS Even CLK(-)
39	ELVCLKP	Receiver signal of LVDS Even CLK(+)
40	GND	Power ground
41	ELV3N	Receiver signal of LVDS Even CH3(-)
42	ELV3P	Receiver signal of LVDS Even CH3(+)
43	GND	Power ground
44	GND	Power ground
45	VDD_LED	Backlight power supply input +12V
46	VDD_LED	Backlight power supply input +12V
47	VDD_LED	Backlight power supply input +12V
48	VDD_LED	Backlight power supply input +12V
49	GND	Power ground
50	GND	Power ground



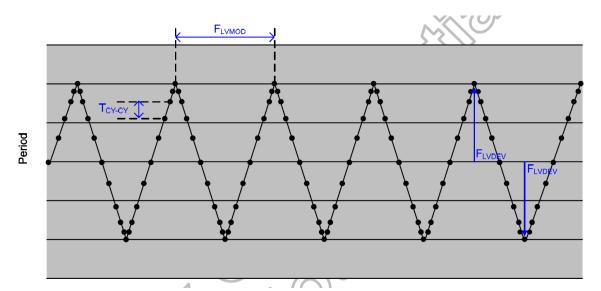
8.2. Function Description

LVDS receiver

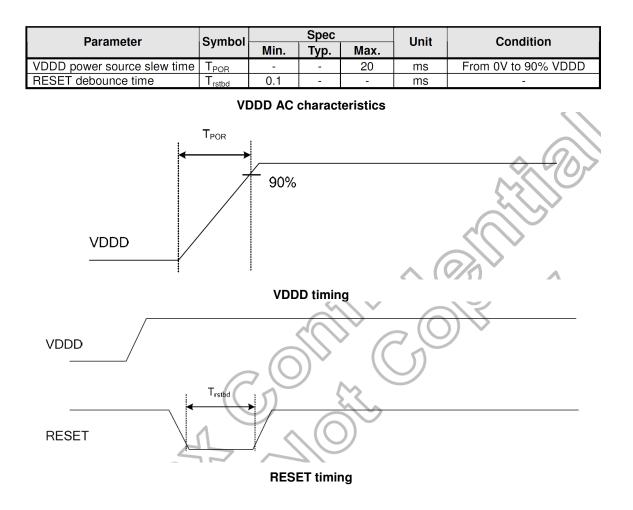

The HX8861-G73-LT has a built-in dual pixel LVDS receiver that converts data from differential serialized format to parallel output.



LVDS input data mapping (VESA format)

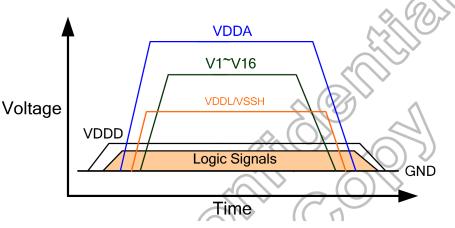


8.3. AC electrical characteristics



LVDS input SSC

LVDS input SSC							
Symbol	Parameter	Condition	Spec.			Unit	
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Unit	
F	LVDS Input frequency	-	25	-	110	MHz	
Tlvsk	LVDS channel to channel skew	F=65MHz V _{IC} =1.2V V _{ID} =±200mV	-600	-	+600	ps	
FLVMOD	Modulating frequency of input clock during SSC	F=85MHz	10	-	300	KHz	
FLVDEV	F _{LVDEV} Maximum deviation of input clock frequency during SSC		-3	-	+3	%	
T _{CY-CY}	Cycle to cycle jitter		-	-	200	ps	



8.4. Power on / off Sequence

This IC is a high-voltage LCD driver, so may be damaged by a large current flow when an incorrect power sequence is used. The recommended sequence should be digital power (VDDD&VSSD) logic signals, analog power (VDDA&VSSA) Gamma correction reference voltage (V1~V16). Reverse this sequence to shut down, or turn off all signals and power simultaneously.

When power on and before LD is detected, all output channels should output short together, until the first LD is received. This function can avoid the unknown status and random output voltage for all output channels during power on condition.

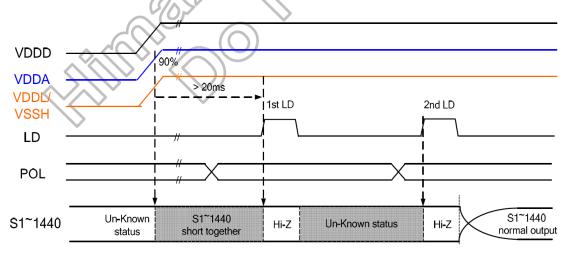


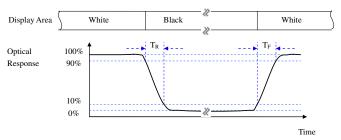
Figure 5.4.2: Power on sequence with LD

9. ELECTRO-OPTICAL CHARACTERISTICS

The following items are measured under stable conditions. The optical characteristics should be measured in dark room or equivalent state with the methods shown in Note 1.

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
Brightness		-	-	700	-	-	cd/m ²	
Response time			Θ=0 , - 30 °C	-	400	-	ms	Note 2
			Θ=0, 25 °C	-	25	-		
Contrast ratio		CR	At the center point of A.A.	-	1000	-	-	Note 3
Color Gamut		-	-	-	70	-	%	
	Φ _H	12	CR≧10		85	-	Degree	Note 5
Viewing Angle	θ_{R}	3			85	-		
	Φ_{L}	6			85	-		
	Θ_{L}	9			85	-		

Ta=25±2°℃


Note:

1. Test equipment setup

After stabilizing and leaving the panel alone at a given temperature for 30 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-5A with a viewing angle of 2° at a distance of 50cm and normal direction.

2. Definition of response time: T_R and T_F

The figure below is the output signal of the photo detector.

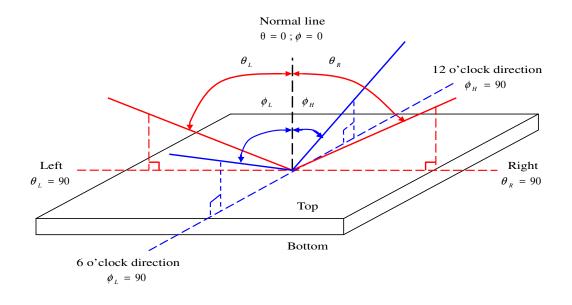
3. Definition of contrast ratio:

Contrast ratio (CR) =

Brightness measured when LCD is at "white state" Brightness measured when LCD is at "black state"

White $V_i = V_{i50\%} \pm 1.5V$

Black $V_i = V_{i50\%} \mp 2.0V$


"±" means that the analog input signal swings in phase with VCOM signal.

" \mp " means that the analog input signal swings out of phase with VCOM signal. Vi50%: The analog input voltage when transmission is 50%.

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

- 4. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.
- 5. Definition of viewing angle:

10. RELIABILITY

10.1MTTF

The LCD module shall be designed to meet a minimum MTTF value of 30,000 hours with normal condition. (25° C in the room without sunlight;not include life time of backlight)

10.2 TESTS

NO.	ITEM	CONDITION	CRITERION
1	High Temperature Non-Operating	95 $^\circ\!\!\mathbb{C}$,500 hrs	No Defect Of Operational Function In Room
2	Low Temperature Non-Operating	-40°C ,500 hrs	Temperature Are Allowable.
3	High Temperature Operating	85 $^\circ\!\!\mathbb{C}$,500 hrs	
4	Low Temperature Operating	-30 $^\circ\!\mathrm{C}$,500 hrs	
5	High Temperature/ Humidity Operating	$60^\circ\!\!\mathbb{C}$,90%RH, 500hrs	
	Temperature Shock	-30°C ←→ 85°C	
6	Non-Operating	(15min)(5min)(15min) trans:5min,200cycle	
7	Electro-static Discharge (LCM only)	150pF,330ohm Contact Discharge:±2KV Air Discharge:±8KV	
8	Electro-static Discharge (Note 6)	150pF,330ohm Contact Discharge:±15KV Air Discharge:±15KV	
9	Vibration tests Non-operating	5 to 9Hz:3.3mm 9 to 200Hz: 1G 200 to 500Hz: 1.5G	

Note 1: Test after 24 hours in room temperature.

Note 2: The sampling above is individually for each reliability testing condition.

- Note 3: The color fading of polarizing filter should not care.
- Note 4: All of the reliability testing chamber above, is using D.I. water.(Min value:1.0 M Ω -cm)
- Note 5: In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judged as a good part.
- Note 6: ESD Test on Car Mirror System.

10.3 Color Performance

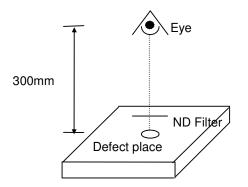
No.	ITEM	Criterion (initial)		
1	Luminance	>50%		
2	NTSC	>70%		
3	Contrast Ratio	>50%		

11. INSPECTION CRITERIA

11.1.Inspection Conditions

11.1.1. Environmental conditions

The environmental conditions for inspection shall be as follows Room temperature: 23±5 ℃


Humidity: 50±20%RH

11.1.2. The external visual inspection

With a single 1000±200lux fluorescent lamp as the light source, the inspection was in the distance of 30cm or more from the LCD to the inspector's eyes.

11.2.Light Method

- 11.2.1.Environment lamp under 1000±200 lux, Viewing direction for inspection over 300 mm
- 11.2.2.The distance from eye to defect around 300mm, the distance from ND Filter to defect around 25~30mm

11.3. Classification Of Defects

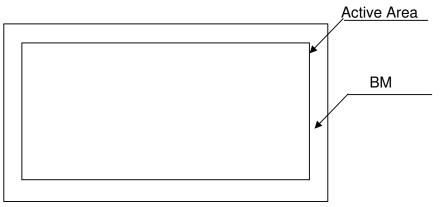
11.3.1.Major defect

A major defect refers to a defect that may substantially degrade usability for product applications.

11.3.2. Minor defect

A minor defect refers to a defect which is not considered to be able substantially degrade the product application or a defect that deviates from existing standards almost unrelated to the effective use of the product or its operation.

Notes: If the LCD/LCM's cosmetic and display performance do not specify in "inspection criterion", itshould be based on these delivered samples.


11.4. Sampling & Acceptable Quality Level

Inspection Item	Major defect	Minor defect	
Cosmetic	1.0%	1.5%	
Electrical test	0.4%	0.65%	

Level II, MIL-STD-105E

11.5. Definition Of Inspection Area

- V.A: Viewing Area
 - i. A: Active Area

12. ILLUSTRATION OF LCD DATE CODE

13. Barcode Rule

TBD

14. RoHS COMPLIANT WARRANTY

RoHs Hazardous substances including:

- Pb : Solder<500 ppm, Other<300ppm
- Hg<200ppm
- Cr6+<200ppm
- Cd<50ppm
- PBB<200ppm
- PBDE<200ppm
- Deca-BDE<200ppm
- HBCD<200ppm
- Asbestos<1000ppm

15. PRECAUTIONS FOR USE

15.1.Safety

- (1) Do not swallow any liquid crystal, even if there is no proof that liquid crystal is poisonous.
- (2) If the LCD panel breaks, be careful not to get liquid crystal to touch your skin.
- (3) If skin is exposed to liquid crystal, wash the area thoroughly with alcohol or soap.

15.2. Storage Conditions

- (1) Store the panel or module in a dark place where the temperature is 23±5 ℃ and the humidity is below 50±20%RH.
- (2) Store in anti-static electricity container.
- (3) Store in clean environment, free from dust, active gas, and solvent.
- (4) Do not place the module near organics solvents or corrosive gases.
- (5) Do not crush, shake, or jolt the module.
- (6) Do not exposed to direct sun light of fluorescent lamps.

15.3.Installing LCD Module

Attend to the following items when installing the LCM.

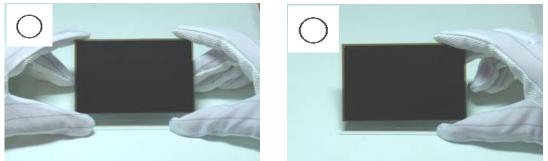
(1) Cover the surface with a transparent protective plate or touch panel to protect the polarizer and LC cell.

(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ±0.1mm.

15.4. Precautions For Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (Vo). Adjust Vo to show the best contrast.
- (2) Driving the LCD in the voltage above the limit will shorten its lifetime.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) When turning the power on, input each signal after the positive/negative voltage becomes stable.
- (5) Do not apply water or any liquid on product which composed of T/P.

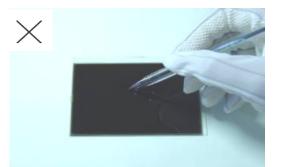
15.5.Handling Precautions


- (1) Avoid static electricity which can damage the CMOS LSI; please wear the wrist strap when handling.
- (2) The polarizing plate of the display is very fragile. So, please handle it very carefully.
- (3) Do not give external shock.
- (4) Do not apply excessive force on the surface; it may cause display abnormal .
- (5) Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- (6) Do not use ketonics solvent & Aromatic solvent, use with a soft cloth soaked with a cleaning naphtha solvent.
- (7) Do not operate it above the absolute maximum rating.
- (8) Do not remove the panel or frame from the module.
- (9) Do not apply water or any liquid on product, which composed of T/P.

i. Handling precaution for LCD

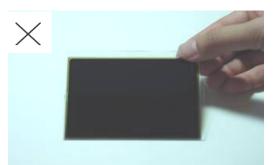
LCD is easy to be damaged. Please note below and be careful for handling!

Correct handling:



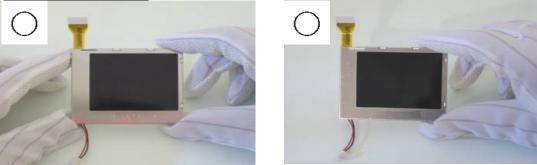
As above photo, please handle with anti-static gloves around LCD edges.

Incorrect handling:


Please don't stack the LCDS.

Please don't operate with sharp stick such as pens.

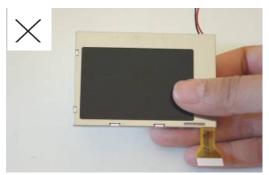
Please don't hold the surface of LCD.


Please don't touch ITO glass without anti-static gloves.

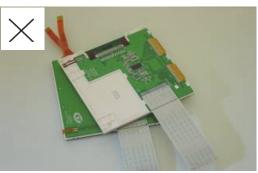
ii. Handling precaution for LCM

LCM is easy to be damaged. Please note below and be careful for handling!

Correct handling:



As above picture, please handle with anti-static gloves around LCM edges.


Incorrect handling:

Please don't touch IC directly.

Please don't hold the surface of panel.

Please don't stack LCM.

Please don't stretch interface of output, such as FPC cable.

15.6.Warranty

- i. The period is within 12 months since the date of shipping out under normal using and storage conditions.
- ii. The warranty will be avoided in case of defect induced by customer.

16. REVISION HISTORY

Version	Revise record	Date
А	New version	2016/5/12
В	修訂視角錯誤	2016/7/19