

TFT-LCD PRODUCT SPECIFICATION

PART NUMBER:	USMP-PK070HD-01A
DESCRIPTION:	7" Active Matrix TFT-LCD, 1920 x 1080 RGB, 262K Full Colors

ISSUE DATE	APPROVED BY	CHECKED BY	PREPARED BY			
	(Customer Use Only)					
PROPRIETARY NOTE:	THIS SPECIFICATION IS THE PROPERTY OF US MICRO PRODUCTS AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF US MICRO PRODUCTS AND MUST BE RETURNED TO US MICRO PRODUCTS UPON ITS REQUEST.					

2. RECORD OF REVISION

DATE	SHEET No.	SUMMARY

3. GENERAL DATA

3.1 DISPLAY FEATURES

This module is a 7" FHD of 16:9 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R (red), G (green), B (blue) sequentially. This display is RoHS compliant, COG (chip on glass) technology and LED backlight are applied on this display.

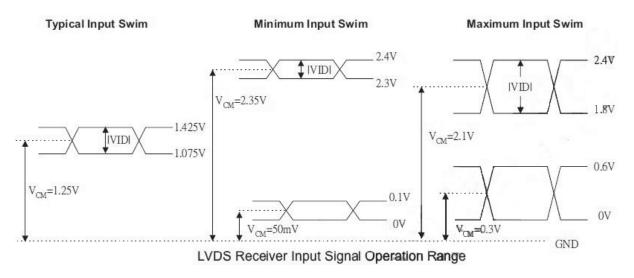
USMP-PK070HD-01A
169.0(W) mm x 104.0(H) mm x 10.0 (D) mm typ.
155.52(W) mm x 87.48(H) mm
0.081(W) mm x 0.081 (H) mm
1920 x 3(RGB)(W) x 1080(H) dots
R, G, B Vertical Stripe
Transmissive Color TFT; Normally Black
Active Matrix
16.7M Colors
3 LEDs Series x 10 Parallel (30 LEDs in Total)
180 typ. (g)
LVDS; 20 pins
3.3V for LCD; 12V for Backlight
0.53W for LCD; 5.16W for Backlight
Super Wide Version (In-Plane Switching)

4. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	V_{DD}	-0.3	4.0	V	-
Input Voltage of Logic	VI	-0.3	V _{DD} +0.3	V	Note 1
Operating Temperature	Тор	-20	70	°C	Note 2
Storage Temperature	Tst	-30	80	°C	Note 2
Backlight Input Voltage	V_{LED}	-	15	V	-

- Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs.
- Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
 - Background color, contrast and response time would be different in temperatures other than $25\,^{\circ}\mathrm{C}_{\cdot}$
 - Operating under high temperature will shorten LED lifetime.

5. ELECTRICAL CHARACTERISTICS


5.1 LCD CHARACTERISTICS

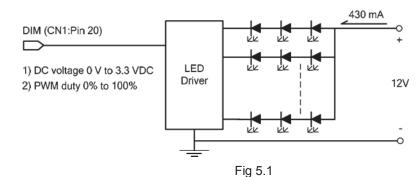
 $T_a = 25$ °C, Vss = 0V

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Power Supply Voltage	V_{DD}	-	3.0	3.3	3.6	V	-
Differential Input	.,	"H" level	-	-	+100	>/	Note 4
Voltage for LVDS Receiver Threshold	V _I	"L" level	-100	-	-	mV Note 1	Note 1
Power Supply Current	I _{DD}	V _{DD} =3.3V	1	160	-	mA	Note 2
Vsync Frequency	f_v	-	ı	60	-	Hz	
Hsync Frequency	$f_{\scriptscriptstyle H}$	-	-	67.5	-	KHz	Note 3
CLK Frequency	$f_{\it CLK}$	-	-	148.5	-	MHz	

Note 1: VCM=+1.2V

VCM is common mode voltage of LVDS transmitter/receiver.

- Note 2: An all white check pattern is used when measuring I_{DD}. f_v is set to 60 Hz.
- Note 3: For LVDS transmitter input.
- Note 4: 1.0A fuse is applied in the module for I_{DD}. For display activation and protection purpose, power supply is recommended larger than 2.5A to start the display and break fuse once any short circuit occurred.



5.2 BACKLIGHT CHARACTERISTICS

T_{-}	=	25	$^{\circ}C$
^{1}a	_	23	

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks	
LED Input Voltage	V_{LED}	-	11.7	12	12.3	V	Note1	
LED Forward Current		0V; 0% duty	1	430	-	Λ	Nata 0	
(Dim Control)	I _{LED}	3.3VDC; 100% duty	-	40	-	mA	Note 2	
LED lifetime	-	I _{LED} =430 mA	-	70K	-	hrs	Note 3	

- Note 1: As Fig. 5.1 shown, LED current is constant, 430 mA, controlled by the LED driver when applying 12V.
- Note 2: Dimming function can be obtained by applying DC voltage or PWM signal from the display interface CN1. The recommended PWM signal is 1K ~ 10K Hz with 3.3V amplitude.
- Note 3: The estimated lifetime is specified as the time to reduce 50% brightness by applying 430 mA at $25\,^{\circ}$ C .

US Micro Products 800-741-7755

6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.
- The backlight unit needs to be turned on for 30 minutes.
- The ambient temperature is 25 °C.
- In the dark room around 500~1000 lx, the equipment has been set for the measurements as shown in Fig 6.1.

					T_{a}	= 25 °C,	$f_v = 60 \text{ Hz},$	$V_{DD} = 3.3V$
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Brightness o	f White	-	/ 0° 0 0°	-	700	-	cd/m ²	Note 1
Brightness U	niformity	-	$\phi = 0^{\circ}, \theta = 0^{\circ},$	70	-	-	%	Note 2
Contrast F	Ratio	CR	I _{LED} = 430 mA	-	800	-	-	Note 3
Response (Rising + Fa		$T_r + T_f$	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	23	-	ms	Note 4
		θ x	φ = 0°, CR ≥ 10	-	85	-		Note 5
Vi avvia av A	n alla	$\theta x'$	$\phi=180^{\circ}, \mathrm{CR}\geq10$	-	85	-	Degree	
Viewing A	ingle	θ y	φ = 90°, CR ≥ 10	-	85	-		
		θ y'	φ = 270°, CR ≥ 10	-	85	-		
	D- d	Х		-	0.64	-		
	Red	Υ		-	0.33	-		
	Croon	Х		-	0.31	-		
Color	Green	Y		-	0.61	-	-	Note 6
Chromaticity	Plue	X	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	0.15	-		
	Blue	Y		-	0.06	-		
	\\/hitc	Х		-	0.31	-		
	White	Υ		-	0.31	-		

Note 1: The brightness is measured from the panel center point, P5 in Fig. 6.2, for the typical value.

Note 2: The brightness uniformity is calculated by the equation as below:

Brightness uniformity =
$$\frac{\text{Min. Brightness}}{\text{Max. Brightness}} \times 100\%$$

, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2.

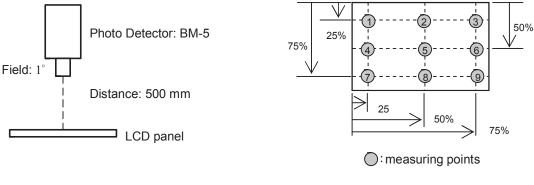
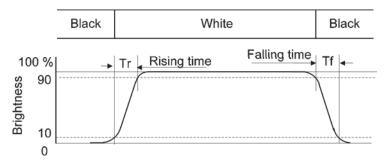


Fig. 6.1 Fig. 6.2


US Micro Products

Note 3: The Contrast Ratio is measured from the center point of the panel, P5, and defined as the following equation:

$$CR = \frac{Brightness of White}{Brightness of Black}$$

Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 10% brightness to 90% brightness when the data is from black to white. Oppositely, Falling time is the period from 90% brightness falling to 10% brightness.

Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY.

The display is super wide viewing angle version, so that the best optical performance can be obtained from every viewing direction.

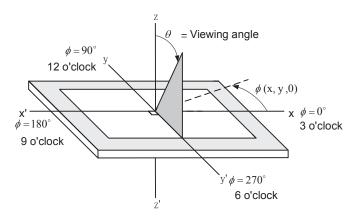
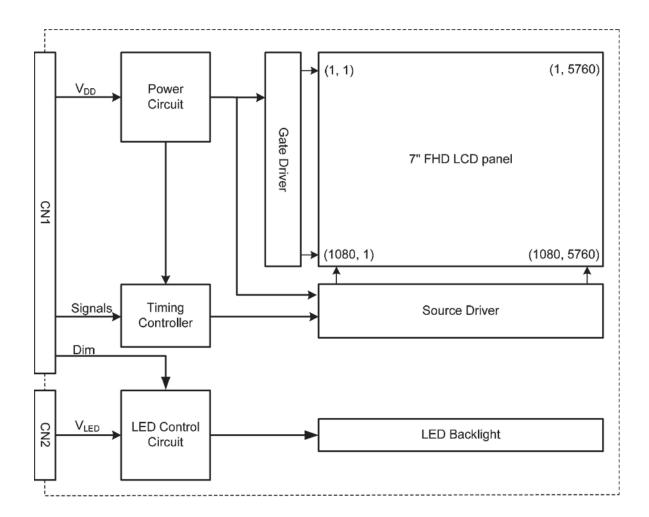



Fig 6.4

Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.

7. BLOCK DIAGRAM

Note 1: Signals are CLK and pixel data pairs.

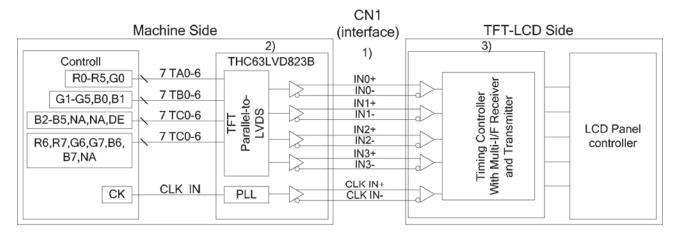
8. LCD INTERFACE

8.1 INTERFACE PIN CONNECTIONS

The display interface connector (CN1) and pin assignment is as below:

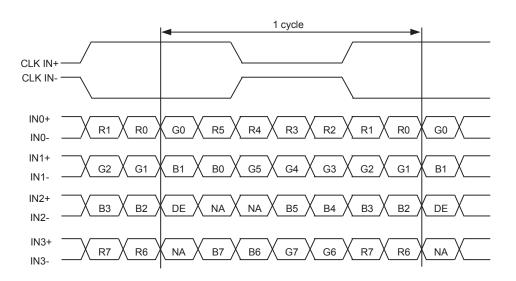
Pin No.	Symbol	Signal	Pin No.	Symbol	Signal
1	V _{DD}	Davies County for Lands	11	IN2-	D0 D5 D5
2	V _{DD}	Power Supply for Logic	12	IN2+	B2~B5, DE
3	V _{SS}	CND	13	V _{SS}	GND
4	V _{SS}	- GND	14	CLK IN-	Divol Clock
5	INO-	D0-D5-C0	15	CLK IN+	Pixel Clock
6	IN0+	R0~R5, G0	16	V _{SS}	GND
7	V _{SS}	GND	17	IN3-	DC D7 CC C7 DC D7
8	IN1-	C1- C5	18	IN3+	R6~R7, G6~G7, B6~B7
9	IN1+	G1~G5, B0~B1	19	NC	No Connection
10	V _{SS}	GND	20	DIM	Note 2

Note 1: IN n- and IN n+ (n=0, 1, 2, 3), CLK IN- and CLK IN+ should be wired by twist-pairs or side-by-side FPC patterns, respectively.


Note 2: Normal brightness: 0V or 0% PWM duty; Brightness control: 0V to 3.3V DC or 0% to 100% PWM duty.

The backlight connector (CN2) is SM02(8.0)B-BHS-1-TB(LF)(SN) made by JST, and pin assignment is as below:

Pin No.	Signal	Signal
1	V_{LED}	12VDC
2	GND	Ground


8.2 LVDS INTERFACE

Note 1: LVDS cable impedance should be 100 ohms per signal line when each 2-lines (+, -) is used in differential mode.

Note 2: The recommended transmitter, THC63LVD823B, is made by Thine or equivalent, which is not contained in the module.

8.3 LVDS DATA FORMAT

DE: Display Enable NA: Not Available

8.4 TIMING CHART

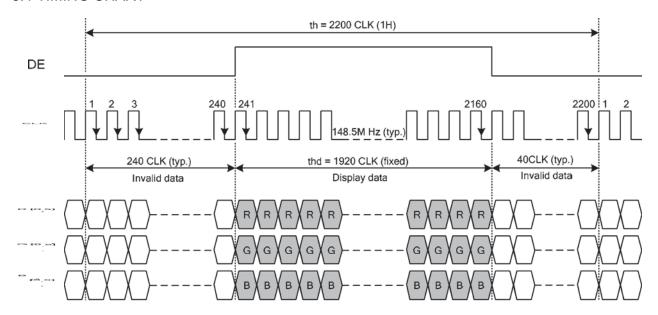


Fig. 8.1 Horizontal Timing

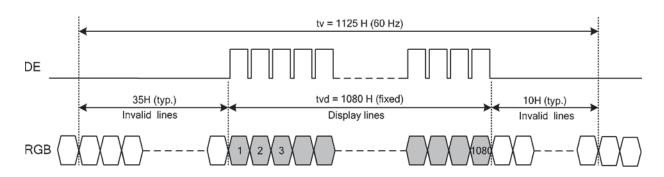


Fig. 8.2 Vertical Timing

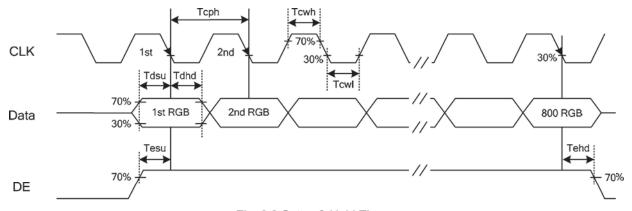
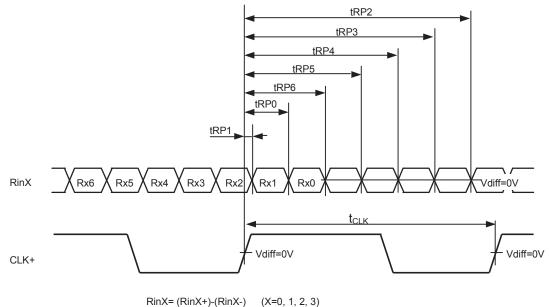


Fig. 8.3 Setup & Hold Time

8.5 TIMING TABLE

The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (Vsync) = 60Hz to define.

A. DE MODE


Item		Symbol	Min.	Тур.	Max.	Unit
	CLK Frequency	fclk	-	148.5	-	MHz
Horizontal	Display Data	thd	-	1920	-	OL IX
	Cycle Time	th	-	2200	-	CLK
Mantin al	Display Line	tvd	-	1080	-	
Vertical	Cycle Time	tv	-	1125	-	Н

B. CLOCK AND DATA INPUT TIMING

	Item	Symbol	Min.	Тур.	Max.	Unit	
CLK	Duty	Tcwh	45	50	55	%	
	Cycle Time	Tcph	-	6.74	-		
Б. 1	Setup Time	Tdsu	1	ı	-		
Data	Hold Time	Tdhd	1	-			
D.F.	Setup Time	Tesu	1	-	-		
DE	Hold Time	Tehd	1	-	-		

8.6 LVDS RECEIVER TIMING

 (/ (/	١	-,	-, -,	-,

	Item	Symbol	Min.	Тур.	Max.	Unit
CLK	Cycle frequency	1/tcLK	-	148.5	-	MHz
RinX (X=0,1,2,3)	0 data position	tRP0	1/7* t _{CLK} -0.49	1/7* t _{CLK}	1/7* t _{CLK} +0.49	
	1st data position	tRP1	-0.49	0	+0.49	
	2nd data position	tRP2	6/7* t _{CLK} -0.49	6/7* t _{CLK}	6/7* t _{CLK} +0.49	
	3rd data position	tRP3	5/7* t _{CLK} -0.49	5/7* t _{CLK}	5/7* t _{CLK} +0.49	ns
	4th data position	tRP4	4/7* t _{CLK} -0.49	4/7* t _{CLK}	4/7* t _{CLK} +0.49	
	5th data position	tRP5	3/7* t _{CLK} -0.49	3/7* t _{CLK}	3/7* t _{CLK} +0.49	
	6th data position	tRP6	2/7* t _{CLK} -0.49	2/7* t _{CLK}	2/7* t _{CLK} +0.49	

8.7 POWER SEQUENCE

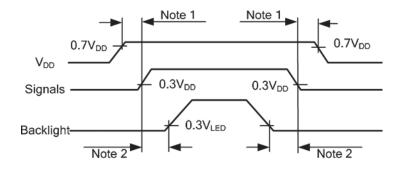
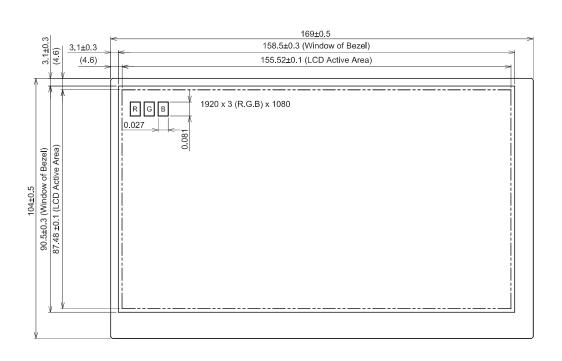


Fig. 8.4 Power Sequence Timing

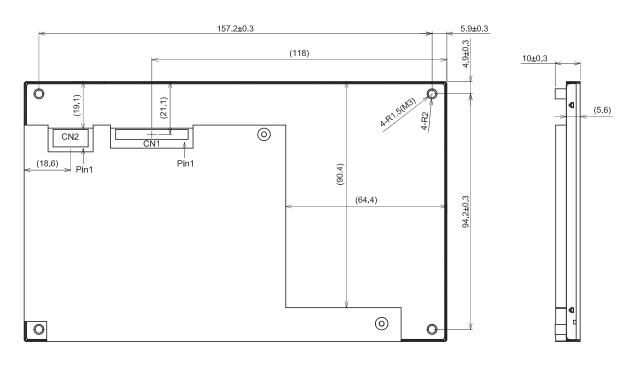
- Note 1: In order to avoid any damages, V_{DD} has to be applied before all other signals. The opposite is true for power off where V_{DD} has to be remained on until all other signals have been switch off. The recommended time period is 1 second.
- Note 2: In order to avoid showing uncompleted patterns in transient state. It is recommended that switching the backlight on is delayed for 1 second after the signals have been applied. The opposite is true for power off where the backlight has to be switched off 1 second before the signals are removed.

8.8 DATA INPUT for DISPLAY COLOR


				ı	Red	Data	a					(Greer	Dat	a		Blue Data								
Inp	ut color	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	В6	B5	B4	ВЗ	B2	B1	В0
		MSB							LSB	MSB							LSB	MSB							LSB
Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green	• •	:	:	•••		:	:	:	:	:	:				:	:	:	:	:	:		:	:	:	:
	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:			:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:
	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note 1: Definition of gray scale : Color(n) Number in parenthesis indicates gray scale level. Larger number corresponds to brighter level.

Note 2: Data Signal: 1: High, 0: Low


9. OUTLINE DIMENSIONS 9.1 FRONT VIEW

** Undefined tolerance is ±0.5mm

9.2 REAR VIEW

** Undefined tolerance is ±0.5mm

Displays

US Micro Products is an industrial distributor specializing in engineered display solutions. We dedicate ourselves to providing the best in displays for the medical, industrial, gaming, automotive, aerospace, military and consumer markets.

OLEDs

Passive LCDs

TFT Display

Multitouch

Open Frame Monitors

Touch Screen

As our customer, you receive expert knowledge, support and service. Our technical sales staff and experienced design engineers provide answers to your questions and engineered solutions to meet your display needs.

Peripheral Devices

Our full line of peripheral devices includes keyboards, trackballs and printers. These rugged industrial products are designed to meet the rigorous demands of your equipment and are available in a variety of standard and custom options.

Keyboards

Trackballs

Aerospace Trackballs

Printers

