

OLED PRODUCT SPECIFICATION

Manufactured by:

PART NUMBER:	USMP-P23601
DESCRIPTION:	1.0", 128 x 32, White, LD7032, TAB

ISSUE DATE	APPROVED BY	CHECKED BY	PREPARED BY
	(Customer Use Only)		
PROPRIETARY NOTE:	THIS SPECIFICATION IS THE PROPERTY (COPIED WITHOUT THE WRITTEN PERMI US MICRO		AND MUST BE RETURNED TO

Preliminary Specification

PRODUCT NAME: RGS10128032WR006 PRODUCT NO.: 9923601000

	CUSTOMER	
	APPROVED BY	
DATE:		

RITDISPLAY CORP. APPROVED	

- 1 - REV.: X01 2008/12/22

REVISION RECORD

REV.	REVISION DESCRIPTION	REV. DATE	REMARK
X01	INITIAL RELEASE	2008. 12. 22	

- 2 -

REV.: X01

CONTENTS

ITEM	PAGE
1. SCOPE	4
2. WARRANTY	4
3. FEATURES	4
4. MECHANICAL DATA	5
5. MAXIMUM RATINGS	6
6. ELECTRICAL CHARACTERISTICS	7
6.1 D.C ELECTRICAL CHARACTERISTICS	
6.2 ELECTRO-OPTICAL CHARACTERISTICS	
7. INTERFACE	9
7.1 FUNCTION BLOCK DIAGRAM	
7.2 PANEL LAYOUT DIAGRAM	
7.3 PIN ASSIGNMENTS	
7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP	
7.5 INTERFACE TIMING CHART	
8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT	13
8.1 POWER ON / OFF SEQUENCE	
8.2 APPLICATION CIRCUIT	
8.3 COMMAND TABLE	
9. RELIABILITY TEST CONDITIONS	15
10. EXTERNAL DIMENSION	16
11. PACKING SPECIFICATION	17
12. APPENDIXES	18

- 3 - REV.: X01 2008/12/22

1. SCOPE

The purpose of this specification is to define the general provisions and quality requirements that apply to the supply of display cells manufactured by RiTdisplay. This document, together with the Module Assembly Drawing, is the highest-level specification for this product. It describes the product, identifies supporting documents and contains specifications.

2. WARRANTY

RiTdisplay warrants that the products delivered pursuant to this specification (or order) will conform to the agreed specifications for twelve (12) months from the shipping date ("Warranty Period"). RiTdisplay is obligated to repair or replace the products which are found to be defective or inconsistent with the specifications during the Warranty Period without charge, on condition that the products are stored or used as the conditions specified in the specifications. Nevertheless, RiTdisplay is not obligated to repair or replace the products without charge if the defects or inconsistency are caused by the force majeure or the reckless behaviors of the customer.

After the Warranty Period, all repairs or replacements of the products are subject to charge.

3. FEATURES

Small molecular organic light emitting diode.

Color: White

Panel matrix: 128*32 Driver IC: LD7032

Excellent quick response time.

Extremely thin thickness for best mechanism design: 1.21mm

High contrast : 2000:1 Wide viewing angle : 160°

8080 or 6800 series parallel interface, Serial Peripheral Interface, I²C

Serial Interface.

Wide range of operating temperature: -40 to 70 °C

Anti-glare polarizer.

- 4 - REV.: X01 2008/12/22

4. MECHANICAL DATA

NO	ITEM	SPECIFICATION	UNIT
1	Dot Matrix	128 (W) x 32 (H)	dot
2	Dot Size	0.18 (W) x 0.18 (H)	mm ²
3	Dot Pitch	0.20 (W) x 0.20 (H)	mm ²
4	Aperture Rate	81	%
5	Active Area	25.58 (W) x 6.38 (H)	mm ²
6	Panel Size	anel Size 29.8 (W) x 15.4 (H)	
7	Panel Thickness	1.21 ± 0.1	mm
8	Module Size	29.8 (W) x 22.4 (H) x 1.21 (D)	mm ³
9	Diagonal A/A size	1.0	inch
10	Module Weight	TBD	gram

5. MAXIMUM RATINGS

ITEM	MIN	MAX	UNIT	Condition	Remark
Supply Voltage (VDD)	-0.3	3.63	V	-40∼+85°C	IC maximum rating
Supply Voltage (VCC C)	8	18	V	-40∼+85°C	IC maximum rating
Operating Temp.	-40	70	°C		
Storage Temp	-40	85	°C		
Humidity	-	85	%		
Life Time	21,000	-	Hrs	140cd/m², 50% checkerboard	Note (1)
Life Time	25,000		Hrs	120 cd/m², 50% checkerboard	Note (2)
Life Time	30,000	-	Hrs	100 cd/m², 50% checkerboard	Note (3)

Note:

- (A) Under VCC C = TBD, Ta = 25°C, 50% RH.
- (B) Life time is defined the amount of time when the luminance has decayed to less than 50% of the initial measured luminance.
- (1) Setting of 140 cd/m²:

Contrast setting : TBD

Frame rate : TBD

- Duty setting: 1/32

(2) Setting of 120 cd/m²:

Contrast setting : TBD

- Frame rate : TBD

Duty setting: 1/32

(3) Setting of 100 cd/m²:

Contrast setting : TBD

- Frame rate : TBD

Duty setting: 1/32

- 6 - REV.: X01 2008/12/22

6. ELECTRICAL CHARACTERISTICS

6.1 D.C ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
VDD	Logic Power 1		1.65	2.8	3.5	V
vcc c	OLED operating voltage		TBD	TBD	TBD	V
V _{IH}	High Logic Input Level		0.8*VDD	ı	VDD	V
V _{IL}	Low Logic Input Level		0	-	0.2*VDD	V
V _{OH}	High Logic Output Level	lout=-100uA	0.9*VDD	1	VDD	V
V _{OL}	Low Logic Output Level	Iout=100uA	0	-	0.1*VDD	V
IIL	Input Leakage Current		-1.0		+1.0	μA
Cptp1	Output Current Pin to Pin Evenness *1)	lout = 50uA	-2.0	1	+2.0	%
Calp1	Output Current Evenness *2)	lout = 50uA	-4.0	-	+4.0	%
Calp2	Output Current Evenness *4)	lout = 50uA	TBD	-	TBD	%
Cchip1	Output Current Absolute Correctness *3)	lout = 50uA	-6.0	-	+6.0	%

NOTICE:

- 7 -

REV.: X01

^{*2) (}lmax lavg) / lavg, (lmin lavg) / lavg, lavg = Σ (lk) / 127 : (k = 0 to 127)

^{*4)} Area Current Deviation at 1chip.

6.2 ELECTRO-OPTICAL CHARACTERISTICS

PANEL ELECTRICAL SPECIFICATIONS

PARAMETER	MIN	TYP.	MAX	UNITS	COMMENTS
Normal mode current		TBD	TBD	mA	All pixels on (1)
Standby mode current		TBD	TBD	mA	Standby mode 10% pixels on (2)
Normal mode power consumption		TBD	TBD	mW	All pixels on (1)
Standby mode power consumption		TBD	TBD	mW	Standby mode 10% pixels on (2)
Normal Luminance	100	120		cd/m ²	Display Average
Standby Luminance		TBD		cd/m ²	Display Average
CIEx (White)	0.24	0.28	0.32		x, y (CIE 1931)
CIEy (White)	0.28	0.32	0.36		x, y (CIL 1931)
Dark Room Contrast	2000:1				
Viewing Angle	160			degree	
Response Time		10		μs	

(1) Normal mode condition:

Driving Voltage : TBDContrast setting : TBD

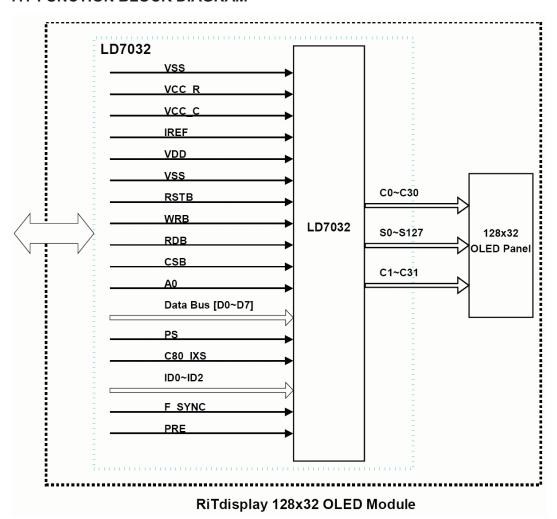
Frame rate : TBDDuty setting : 1/32

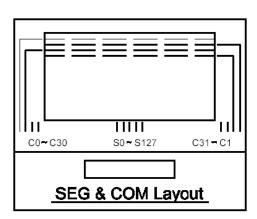
(2) Standby mode condition:

Driving Voltage : TBDContrast setting : TBD

Frame rate : TBDDuty setting : 1/32

- 8 -


REV.: X01



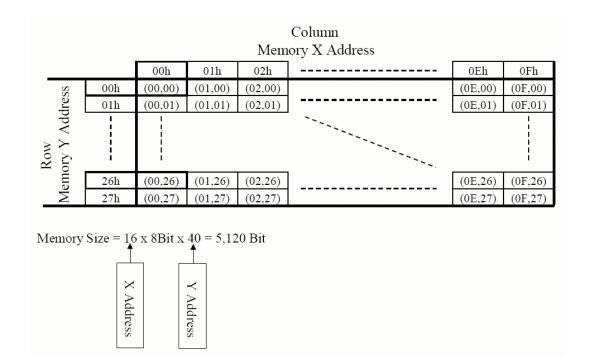
7. INTERFACE

7.1 FUNCTION BLOCK DIAGRAM

7.2 PANEL LAYOUT DIAGRAM

- 9 - REV.: X01 2008/12/22

7.3 PIN ASSIGNMENTS


PIN NO.	PIN NAME	DESCRIPTION
1	VSS	Ground pin.
2	VCC R	OELD Dot Matrix Power Supply for Row Driver. A 4.7uF capacitor is recommended to connect between VCC R and GND. If internal row power regulator is disabled, It must be connected to the external high voltage source or VCC C.
3	VCC C	OELD Dot Matrix Power Supply for Column VCC C Driver.
4	IREF	This pin is the dot output current reference pin. A resister should be connected between this pin and VSS.
5	VDD	Analog and digital voltage supply.
6	VSS	Ground pin.
7	RSTB	Reset (Active Low).
8	WRB	Write (Active Low, 80 Interface). H:Read L:Write (68 Interface).
9	RDB	Read (Active Low, 80 Interface). Enable (68 Interface).
10	CSB	Chip Select (Active Low).
11	A0	Address (L: command, H: Parameter).
12	D7	These are 8-bit bi-directional data bus to be connected to
13	D6	the microprocessor's data bus.
14	D5	When I ² C interface mode is selected, D1 will be the I ² C data
15		input (SDA) and D0 will be the I ² C bus clock input (SCL), and
16	D3	D2 ~ D7 should be tied VDD or VSS or floating.
17	D2	When serial interface mode is selected, D1 will be the serial
18	D1	data input (SDIN), D0 will be the serial clock input (SCLK),
19	D0	and D2 ~ D7 should be tied VDD or VSS or floating.
20	PS	H: Parallel L: Serial
21		H: 68CPU, I ² C is selected. L: 80CPU, I ² C is not selected.
22	ID2	These pipe configure 120 interfers address Hairarthan
23	ID1	These pins configure I ² C interface address. Using these pins, I ² C Address can be selected.
24	ID0	pins, i C Address can be selected.
25	F SYNC	Frame Sync Signal.
26	PRE	Pre-Charge Voltage.
27	VCC C	OELD Dot Matrix Power Supply for Column VCC C Driver.
28	VSS	Ground pin.

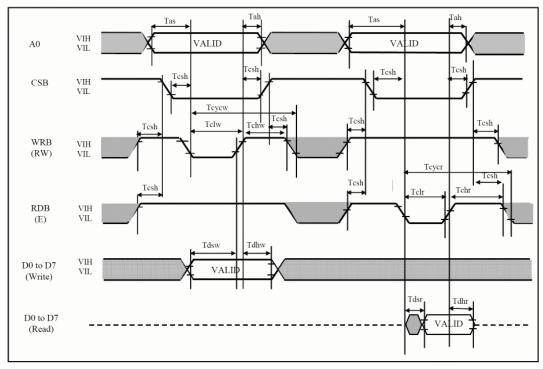
- 10 - REV.: X01 2008/12/22

7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP

- 11 -

REV.: X01

2008/12/22



7.5 INTERFACE TIMING CHART

Parallel Interface 1 (Write/Read Timing)

 $(VSS = 0V, VDD = 2.6V \sim 3.5V, Ta = 25 \degree C)$

Parameter	Symbol	Conditi	Condition		Specification		
rarameter	Symbol	Condition		MIN	MAX	Units	
Address setup time	Tas	A0		20			
Address hold time	Tah	A0		10			
System syste time	Teyew	WRB	Write	100			
System cycle time	Teyer	RDB	Read	500			
Write control low pulse width	Telw	WRB		40			
Write control high pulse width	Tehw			40			
Read control low pulse time	Telr	RDB		60			
Read control high pulse time	Tehr			80		ns	
Write data setup time	Tdsw			20			
Write data hold time	Tdhw	1					
Read data setup time (Data Output Access Time)	Tdsr	D0 – D7			200		
Read data hold time (Data output disable time)	Tdhr			10			
CSB – WRB , RDB time	Tesh	CSB		10			

- 12 -

REV.: X01

2008/12/22

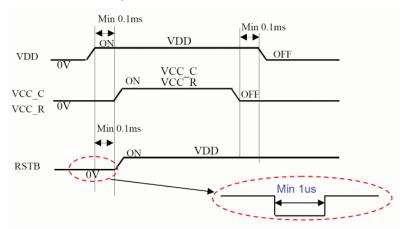
Parallel Interface2 (Write/Read Timing)

 $(VSS = 0V, VDD = 1.65V \sim 3.5V, Ta = 25 ^{\circ}C)$

Demonstra	Symbol	Condition		Specification		TT '4
Parameter				MIN	MAX	Units
Address setup time	Tas	A0		60		
Address hold time	Tah	A0		30		
System cycle time	Teyew	WRB	Write	300		
	Teyer	RDB	Read	500		
Write control low pulse width	Telw	WRB		120		ns
Write control high pulse width	Tehw			120		
Read control low pulse time	Telr	RDB		60		
Read control high pulse time	Tehr			80		
Write data setup time	Tdsw			60		
Write data hold time	Tdhw	D0 – D7		30		
Read data setup time (Data Output Access Time)	Tdsr				200	
Read data hold time (Data output disable time)	Tdhr			10		
CSB – WRB , RDB time	Tesh	CSB		30		

- 13 -

REV.: X01


2008/12/22

8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT

8.1 POWER ON / OFF SEQUENCE

Power On Sequence

System Power On 1 (Vdd On)

Wait for Several ms

RESB Active

System Power On 2 (Vcc On)

Wait for Several ms

Use Graphics Case

DSTBY OFF 14h 00h

3.Panel Condition Set

4. Drive Condition Set

5.Memory Data Write

DDISP ON 02h 01h

Graphics Off Sequence

Iref Off	12h 00h
DDISP Off	02h 00h
DSTBY ON	14h 01h

System Power Off 2 (Vcc Off)

Wait for Several ms

System Power Off 1 (Vdd Off)

- 14 - REV.: X01

8.2 APPLICATION CIRCUIT

TBD

8.3 COMMAND TABLE

Refer to LD7032 IC Spec.

- 15 -

REV.: X01

2008/12/22

9. RELIABILITY TEST CONDITIONS

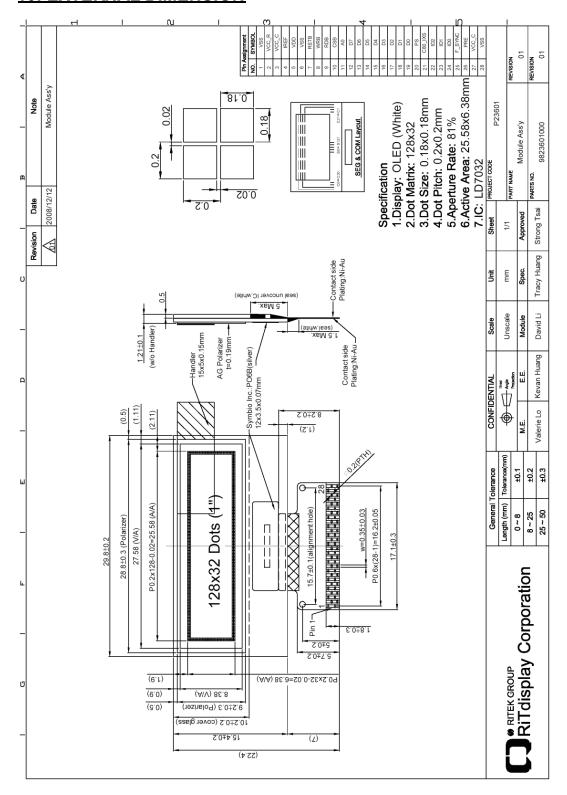
No.	Items	Specification	Quantity
1	High temp. (Non-operation)	85°C, 240hrs	5
2	High temp. (Operation)	70°C, 120hrs	5
3	Low temp. (Operation)	-40°C, 120hrs	5
4	High temp. / High humidity (Operation)	65°C, 90%RH, 120hrs	5
5	Thermal shock (Non-operation)	-40°C ~85°C (-40°C /30min; transit /3min; 85°C /30min; transit /3min) 1cycle: 66min, 100 cycles	5
6	Vibration	Frequency: 5~50HZ, 0.5G Scan rate: 1 oct/min Time: 2 hrs/axis Test axis: X, Y, Z	1 Carton
7	Drop	Height: 120cm Sequence: 1 angle · 3 edges and 6 faces Cycles: 1	1 Carton
8	ESD (Non-operation)	Air discharge model, ±8kV, 10 times	5

Test and measurement conditions

- 1. All measurements shall not be started until the specimens attain to temperature stability.
- 2. All-pixels-on is used as operation test pattern.
- 3. The degradation of Polarize are ignored for item 1, 4 & 5.

Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: > 50% of initial value.
- 4. Current consumption: within \pm 50% of initial value.


- 16 -

REV.: X01

10. EXTERNAL DIMENSION

- 17 - REV.: X01 2008/12/22

11. PACKING SPECIFICATION

TBD

- 18 -

REV.: X01 2008/12/22

12. APPENDIXES

APPENDIX 1: DEFINITIONS

A. DEFINITION OF CHROMATICITY COORDINATE

The chromaticity coordinate is defined as the coordinate value on the CIE 1931 color chart for R, G, B, W.

B. DEFINITION OF CONTRAST RATIO

The contrast ratio is defined as the following formula:

C. DEFINITION OF RESPONSE TIME

The definition of turn-on response time Tr is the time interval between a pixel reaching 10% of steady state luminance and 90% of steady state luminance. The definition of turn-off response time Tf is the time interval between a pixel reaching 90% of steady state luminance and 10% of steady state luminance. It is shown in Figure 2.

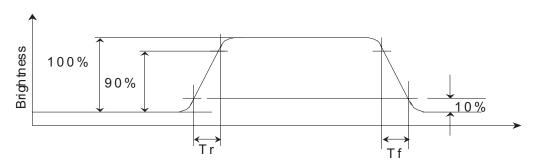


Figure 2: Response time

- 19 -

REV.: X01 2008/12/22

D. DEFINITION OF VIEWING ANGLE

The viewing angle is defined as Figure 3. Horizontal and vertical (H & V) angles are determined for viewing directions where luminance varies by 50% of the perpendicular value.

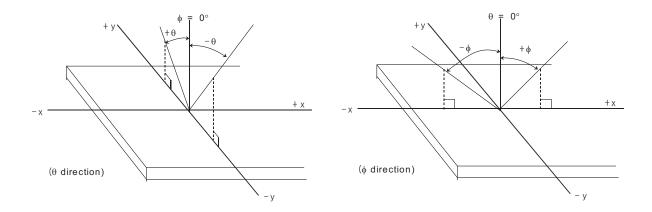
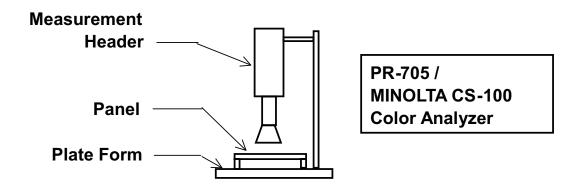


Figure 3: Viewing Angle



APPENDIX 2: MEASUREMENT APPARATUS

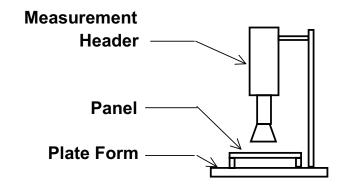
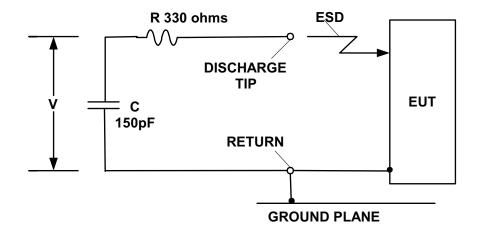

A. LUMINANCE/COLOR COORDINATE

PHOTO RESEARCH PR-705, MINOLTA CS-100

B. CONTRAST / RESPONSE TIME / VIEW ANGLE

WESTAR CORPORATION FPM-510

Westar FPM-510
Display Contrast /
Response time /
View angle Analyzer


- 21 -

REV.: X01

C. ESD ON AIR DISCHARGE MODE

APPENDIX 3: PRECAUTIONS

A. RESIDUE IMAGE

Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.

- 23 -

REV.: X01 2008/12/22

Los Angeles + Austin + New York + Orlando + Shenzhen

(800) 741-7755

www.usmicroproducts.com

Displays

US Micro Products is an industrial distributor specializing in engineered display solutions. We dedicate ourselves to providing the best in displays for the medical, industrial, gaming, automotive, aerospace, military, and consumer markets.

OLEDs

TFT Displays

Open Frame Monitors

Passive LCDs

Multitouch

As a customer, you benefit from our expert knowledge, support and service which allow quick selection and design-in of the best display for your application. On hand stock and demo boards facilitate quick access and evaluation to get you going fast. Our technical sales staff and experienced design engineers provide answers to your questions as well as engineered solutions to solve your display needs.


Peripheral Devices

Our full line of peripheral devices includes keyboards, trackballs, and printers. These rugged industrial products are designed to meet your demanding requirements and are available as both standard and custom solutions.

Keyboards

Trackballs Aerospace Trackballs

Joysticks

Printers

