

OLED PRODUCT SPECIFICATION

Manufactured by:

PART NUMBER:	USMP-P14203
DESCRIPTION:	1.3" OLED, Blue, 128x96 Resolution,
	COF, SSD1329

ISSUE DATE	APPROVED BY	CHECKED BY	PREPARED BY
	(Customer Use Only)		
PROPRIETARY NOTE:	THIS SPECIFICATION IS THE PROPERTY OF COPIED WITHOUT THE WRITTEN PERMINERO		AND MUST BE RETURNED TO

REVISION RECORD

REV.	REVISION DESCRIPTION	REV. DATE	REMARK
X01	INITIAL RELEASE	2006. 07. 04	
A01	 ■ Modify product name (RGC13128096BH000→ RGS13128096BH000) ■ Add panel electrical specifications of standby mode ■ Add packing specification 	2006. 09. 26	Page 1, 8 & 20
A02	 Modify specification of dark room contrast Modify power on/off sequence Modify packing specification 	2007. 11. 13	Page 4, 8, 16 & 20
A03	■ Modify definition of panel thickness■ Modify power off sequence■ Modify packing specification	2009. 04. 07	Page 5, 16 & 20
A04	■ Modify panel thickness■ Modify polarizer thickness■ Modify IC dimension	2009. 11. 26	Page 4, 5 & 19

- 2 - REV.: A04 2009/11/26

CONTENTS

ITEM	PAGE
1. SCOPE	4
2. WARRANTY	4
3. FEATURES	4
4. MECHANICAL DATA	5
5. MAXIMUM RATINGS	6
6. ELECTRICAL CHARACTERISTICS	7
6.1 D.C ELECTRICAL CHARACTERISTICS	
6.2 ELECTRO-OPTICAL CHARACTERISTICS	
7. INTERFACE	9
7.1 FUNCTION BLOCK DIAGRAM	
7.2 PANEL LAYOUT DIAGRAM	
7.3 PIN ASSIGNMENTS	
7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP	
7.5 INTERFACE TIMING CHART	
8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT	16
8.1 POWER ON / OFF SEQUENCE	
8.2 APPLICATION CIRCUIT	
8.3 COMMAND TABLE	
9. RELIABILITY TEST CONDITIONS	18
10. EXTERNAL DIMENSION	19
11. PACKING SPECIFICATION	20
12. APPENDIXES	21

- 3 - REV.: A04 2009/11/26

1. SCOPE

The purpose of this specification is to define the general provisions and quality requirements that apply to the supply of display cells manufactured by RiTdisplay. This document, together with the Module Ass'y Drawing, is the highest-level specification for this product. It describes the product, identifies supporting documents and contains specifications.

2. WARRANTY

RiTdisplay warrants that the products delivered pursuant to this specification (or order) will conform to the agreed specifications for twelve (12) months from the shipping date ("Warranty Period"). RiTdisplay is obligated to repair or replace the products which are found to be defective or inconsistent with the specifications during the Warranty Period without charge, on condition that the products are stored or used as the conditions specified in the specifications. Nevertheless, RiTdisplay is not obligated to repair or replace the products without charge if the defects or inconsistency are caused by the force majeure or the reckless behaviors of the customer.

After the Warranty Period, all repairs or replacements of the products are subject to charge.

3. FEATURES

- Small molecular organic light emitting diode.
- Color: Blue
- Panel matrix : 128*96
- Driver IC: SSD1329U2
- Excellent Quick response time: 10µs
- Extremely thin thickness for best mechanism design: 1.61mm.
- High contrast : 2000:1
- Wide viewing angle: 160°
- 8-bit 6800-series Parallel Interface, 8-bit 8080-series Parallel Interface,
 Serial Peripheral Interface.
- Wide range operating temperature : -40 to 70 °C
- Anti-glare polarizer.

- 4 - REV.: A04 2009/11/26

4. MECHANICAL DATA

NO	ITEM	SPECIFICATION	UNIT
1	Dot Matrix	128 (W) x 96 (H)	dot
2	Dot Size	0.19 (W) x 0.19 (H)	mm ²
3	Dot Pitch	0.21 (W) x 0.21 (H)	mm²
4	Aperture Rate	82	%
5	Active Area	26.86 (W) x 20.14 (H)	mm²
6	Panel Size	33 (W) x 26.8 (H)	mm ²
7*	Panel Thickness	1.42 ± 0.1	mm
8	Module Size	33 (W) x 41.6 (H) x 1.61 (T)	mm³
9	Diagonal A/A size	1.3	inch
10	Module Weight	2.88 ± 10%	gram

^{*} Panel thickness includes substrate glass, cover glass and UV glue thickness.

- 5 - REV.: A04 2009/11/26

5. MAXIMUM RATINGS

ITEM	MIN	MAX	UNIT	Condition	Remark
Supply Voltage (V _{DD})	-0.3	3.5	V	Ta = 25°C	IC maximum rating
Supply Voltage (Vcc)	8	16	V	Ta = 25°C	IC maximum rating
Operating Temp.	-40	70	Ŝ		
Storage Temp	-40	85	°C		
Humidity		85	%		
Life Time	5,200	-	Hrs	100 cd/m ² , 50% checkerboard	Note (1)
Life Time	6,500	-	Hrs	80 cd/m ² , 50% checkerboard	Note (2)
Life Time	8,600	-	Hrs	60 cd/m ² , 50% checkerboard	Note (3)

Note:

- (A) Under Vcc = 15V, Ta = 25°C, 50% RH.
- (B) Life time is defined the amount of time when the luminance has decayed to less than 50% of the initial measured luminance.
- (1) Setting of 100 cd/m²:

Contrast setting : 0xB4

Frame rate: 85Hz
Duty setting: 1/96
(2) Setting of 80 cd/m²:

Contrast setting: 0x7F

Frame rate: 85Hz
Duty setting: 1/96
(3) Setting of 60 cd/m²:

Contrast setting: 0x4A

Frame rate: 85HzDuty setting: 1/96

- 6 - REV.: A04 2009/11/26

6. ELECTRICAL CHARACTERISTICS

6.1 D.C ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETERS	TEST CONDITION	MIN	TYP	MAX	UNIT
V _{CC}	Driver power supply (for OLED panel)	Ta=-20°C to +70°C	14.5	15	15.5	V
V_{DD}	Logic operating voltage	Ta=-20°C to +70°C	2.4	2.7	3.5	>
V _{OH}	Hi logic output level	lout=100 uA, 3.3MHz	0.9* V _{DD}	-	V_{DD}	V
V _{OL}	Low logic output level	lout=100uA, 3.3MHZ	0	-	0.1* V _{DD}	٧
V _{IH}	Hi logic input level	lout=100uA, 3.3MHZ	0.8* V _{DD}	ı	V_{DD}	>
V _{IL}	Low logic input level	lout=100uA, 3.3MHZ	0	ı	0.2* V _{DD}	>
I _{CC}	Operating current for V _{CC}	Contrast=7F	-	750	850	uA
I _{DD}	Operating current for V_{DD}	Contrast=7F	-	72	200	uA
		Contrast=7F	250	300	370	uA
	Segment output	Contrast=5F	-	225	-	uA
ISEG	current	Contrast=3F	-	150	-	uA
		Contrast=1F	50	75	100	uA

Note : V_{DD} =2.7 V ; V_{CC} = 15 V ; Frame rate= 85 Hz ; No panel attached.

- 7 - REV.: A04 2009/11/26

6.2 ELECTRO-OPTICAL CHARACTERISTICS

PANEL ELECTRICAL SPECIFICATIONS

PARAMETER	MIN	TYP.	MAX	UNITS	COMMENTS
Normal mode current	1	23	25	mA	All pixels on (1)
Standby mode current	ı	2	4	mA	Standby mode 10% pixels on (2)
Normal mode power consumption	-	345	375	mW	All pixels on (1)
Standby mode power consumption	-	30	60	mW	Standby mode 10% pixels on (2)
Normal mode Luminance	60	80		cd/m ²	Display Average
Standby mode Luminance		30		cd/m ²	Display Average
CIEx (Blue)	0.10	0.14	0.18		v v (CIE 1021)
CIEy (Blue)	0.20	0.24	0.28		x, y (CIE 1931)
Dark Room Contrast	2000:1				
Viewing Angle	160	-		degree	
Response Time		10		μs	

(1) Normal mode condition:

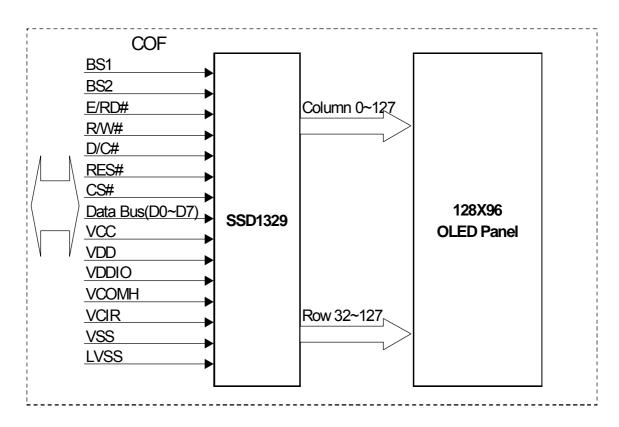
Driving Voltage: 15VContrast setting: 0x7FFrame rate: 85Hz

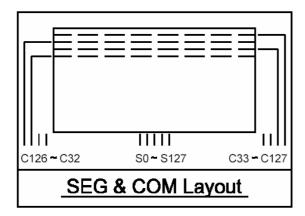
- Duty setting: 1/96

(2) Standby mode condition:

Driving Voltage : 15VContrast setting : 0x00

Frame rate: 85HzDuty setting: 1/96


- 8 - REV.: A04 2009/11/26



7. INTERFACE

7.1 FUNCTION BLOCK DIAGRAM

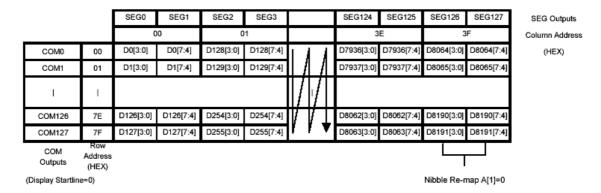
7.2 PANEL LAYOUT DIAGRAM

- 9 - REV.: A04 2009/11/26

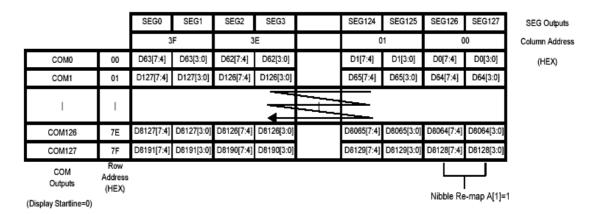
7.3 PIN ASSIGNMENTS

PIN NAME	PIN NO			DESCRI	PTION						
NC	1	No conr	No connection.								
VCIR	2	No conr	nection and	l left float.							
VCOMH	3		oltage Outp	•	tor shou	lld be connected					
LVSS	4	Ground									
VSS	5	Ground	•								
BS1	6	6	arallel interf 800-parallel nterface	face selection 8080-parallel interface	on input. Serial interface						
DOO	7	BS1 0		1	0	1					
BS2	7	BS2 1		1	0						
IREF	8		ce current or should b		d betwe	en this pin and V_{DD} .					
CS#	9	Chip se	lect input.								
RES#	10		ignal input. 's low, initia		SSD132	9 is executed.					
D/C#	11	Data/ C Pull hig	ommand con h for write/r		data.						
R/W#	12	MCU in	terface inpi								
Е	13		terface inpi			tion is initiated when					
D0	14	Data bu	s(for parall	lel interface)						
D1	15	Data bu	s(for parall	lel interface)						
D2	16	Data bu	s(for parall	lel interface)						
D3	17	Data bu	s(for parall	lel interface)						
D4	18	Data bu	s(for parall	lel interface)						
D5	19	Data bu	s(for parall	lel interface)						
D6	20	Data bu	s(for parall	lel interface)						
D7	21	Data bu	s(for parall	lel interface)						
VDDIO	22			r supply pin	of I/O b	uffer.					
VDD	23	Power s	supply for lo	ogic.							
VCC	24	Power s	supply for a	nalog circui	t.						
NC	25	No conr	nection.								

- 10 - REV.: A04 2009/11/26



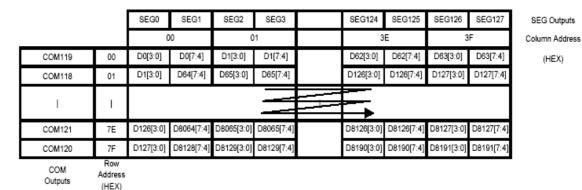
7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP


GDDRAM Address Map - Horizontal Address Increment A[2]=0, Column Address Re-map A[0]=0, Nibble Re-map A[1]=0, COM Re-map A[4]=0, Display Start Line=00H (Data byte sequence: D0, D1, D2 ... D8191)

											-
			SEG0	SEG1	SEG2	SEG3	SEG124	SEG125	SEG126	SEG127	SEG Outputs
			0	00	0)1	3	E	3	F	Column Addre
	COM0	00	D0[3:0]	D0[7:4]	D1[3:0]	D1[7:4]	D62[3:0]	D62[7:4]	D63[3:0]	D63[7:4]	(HEX)
	COM1	01	D64[3:0]	D64[7:4]	D65[3:0]	D65[7:4]	D126[3:0]	D126[7:4]	D127[3:0]	D127[7:4]	
	I	1					ЫÎ				
	COM126	7E	D8064[3:0]	D8064[7:4]	D8065[3:0]	D8065[7:4]	D8126[3:0]	D8126[7:4]	D8127[3:0]	D8127[7:4]	
	COM127	7F	D8128[3:0]	D8128[7:4]	D8129[3:0]	D8129[7:4]	D8190[3:0]	D8190[7:4]	D8191[3:0]	D8191[7:4]	
•	COM Outputs	Row Address (HEX)							Nibble Re	-map A[1]=0	

GDDRAM Address Map - Vertical Address Increment A[2]=1, Column Address Re-map A[0]=0, Nibble Re-map A[1]=0, COM Re-map A[4]=0, Display Start Line=00H (Data byte sequence: D0, D1, D2 ... D8191)

GDDRAM Address Map - Horizontal Address Increment A[2]=0, Column Address Re-map A[0]=1, Nibble Re-map A[1]=1, COM Re-map A[4]=0, Display Start line=00H (Data byte sequence: D0, D1, D2 ... D8191)


- 11 - REV.: A04 2009/11/26

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

GDDRAM Address Map - Horizontal Address Increment A[2]=0, Column Address Re-map A[0]=0, Nibble Re-map A[1]=0, COM Re-map A[4]=1, Display Start Line=78H (Data byte sequence: D0, D1, D2 ... D8191)

(Display Startline=78H)

GDDRAM Address Map - Horizontal Address Increment A[2]=0, Column Address Re-map A[0]=0, Nibble Re-map A[1]=0, COM Re-map A[4]=0, Display Start Line=00H (Data byte sequence: D0, D1, D2 ... D7811), Column Start Address = 01H, Column End Address = 3EH, Row Start Address = 01H, Row End Address = 7EH

		SEG0	SEG1	SEG2	SEG3	SEG124	SEG125	SEG126	SEG127
	00		10	()1	3	E	3	F
COM0	00								
COM1	01			D0[3:0]	D0[7:4]	D61[3:0]	D61[7:4]		
I	_					 111			
COM126	7E			D7750[3:0]	D7750[7:4]	D7811[3:0]	D7811[7:4]		
COM127	7F								

SEG Outputs Column Address (HEX)

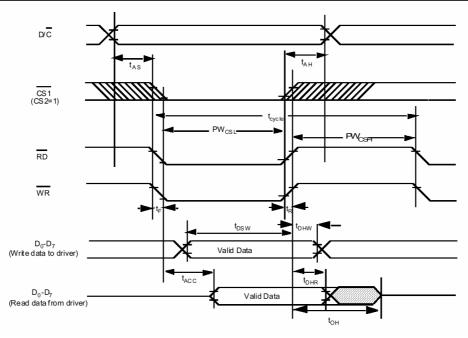
(HEX)

COM Outputs (Display Startline=0)

Address

(HEX)

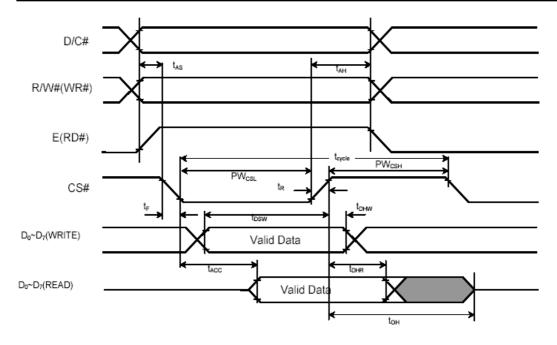
- 12 -


REV.: A04 2009/11/26

7.5 INTERFACE TIMING CHART

8080-Series MPU Parallel Interface Timing Characteristics (V_{DD} - V_{SS} = 2.4 to 3.5V, T_A = -30 to 85°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	15	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{CSL}	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)	120 60	-	-	ns
PW _{CSH}	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60 60	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

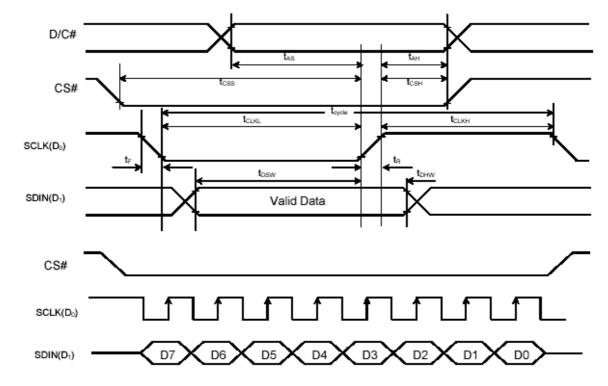


8080-series MPU Parallel Interface Characteristics

- 13 - REV.: A04 2009/11/26

6800-Series MPU Parallel Interface Timing Characteristics (VDD - Vss = 2.4 to 3.5V, TA = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{АН}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	15	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{он}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{CSL}	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)	120 60	-	-	ns
PW _{csh}	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60 60	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns


6800-series MPU Parallel Interface Characteristics

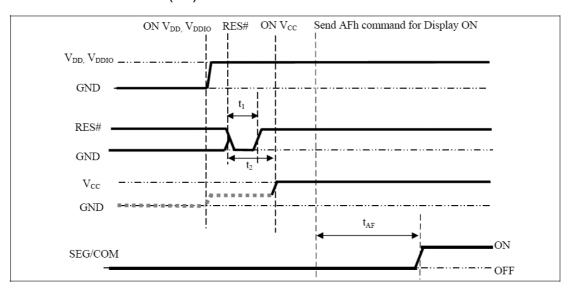
- 14 - REV.: A04 2009/11/26

Serial Interface Timing Characteristics (VDD-VSS = 2.4 to 3.5V, TA = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	250	,	,	ns
t _{AS}	Address Setup Time	150	,	,	ns
t _{AH}	Address Hold Time	150	,	,	ns
t _{css}	Chip Select Setup Time	120	,	,	ns
t _{csH}	Chip Select Hold Time	60	,	,	ns
t _{DSW}	Write Data Setup Time	100		,	ns
t _{DHW}	Write Data Hold Time	100	,	,	ns
t _{CLKL}	Clock Low Time	100	,	,	ns
t _{CLKH}	Clock High Time	100	,	,	ns
t _R	Rise Time	-	,	15	ns
t _F	Fall Time		,	15	ns

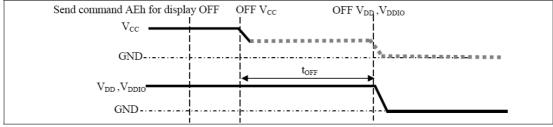
Serial Interface Characteristics

- 15 - REV.: A04 2009/11/26



8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT

8.1 POWER ON / OFF SEQUENCE

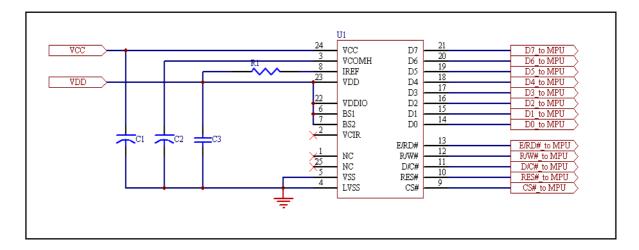

Power ON sequence:

- 1. Power ON VDD, VDDIO.
- 2. After VDD, VDDIO become stable, set RES# pin LOW (logic low) for at least 3us(t1) and then HIGH (logic high).
- After set RES# pin LOW (logic low), wait for at least 3us(t2). Then Power ON Vcc.(1)
- 4. After Vcc become stable, send command AFh for display ON. SEG/COM will be ON after 100ms(tAF).

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF Vcc. (1), (2)
- 3. Wait for toff Power OFF VDD, VDDIO. (where Minimum toff=80ms, Typical toff=100ms)

Note:


- (1) Since an ESD protection circuit is connected between VDD, VDDIO and VCC, VCC becomes lower than VDD whenever VDD, VDDIO is ON and VCC is OFF as shown in the dotted line of VCC in above figures.
- (2) Vcc should be disabled when it is OFF.

- 16 - REV.: A04 2009/11/26

8.2 APPLICATION CIRCUIT

U1: 128x96 OLED module C1: 4.7uF, tantalum type C2: 1uF, tantalum type

C3: 0.1uF

R1: 200 K ohm, tolerance 1%

8.3 COMMAND TABLE

Refer to IC Spec.: SSD1329

- 17 - REV.: A04 2009/11/26

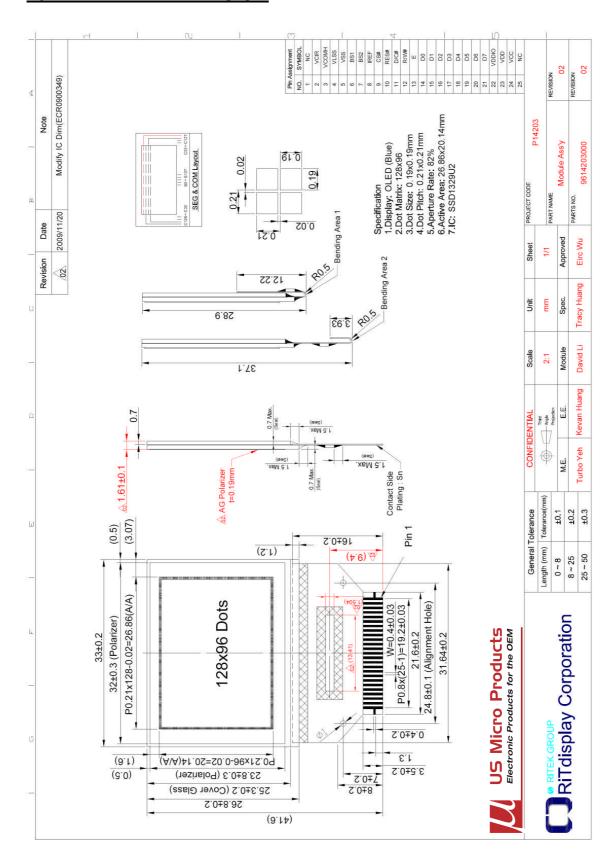
9. RELIABILITY TEST CONDITIONS

No.	Items	Specification	Quantity
1	High temp. (Non-operation)	85°C, 240hrs	5
2	High temp. (Operation)	70°C, 120hrs	5
3	Low temp. (Operation)	-40°C, 120hrs	5
4	High temp. / High humidity (Operation)	65°C, 90%RH, 120hrs	5
5	Thermal shock (Non-operation)	-40°C ~85°C (-40°C /30min; transit /3min; 85°C /30min; transit /3min) 1cycle: 66min, 100 cycles	5
6	Vibration	Frequency: 5~50HZ, 0.5G Scan rate: 1 oct/min Time: 2 hrs/axis Test axis: X, Y, Z	1 Carton
7	Drop	Height: 120cm Sequence : 1 angle \ 3 edges and 6 faces Cycles: 1	1 Carton
8	ESD (Non-operation)	Air discharge model, ±8kV, 10 times	5

Test and measurement conditions

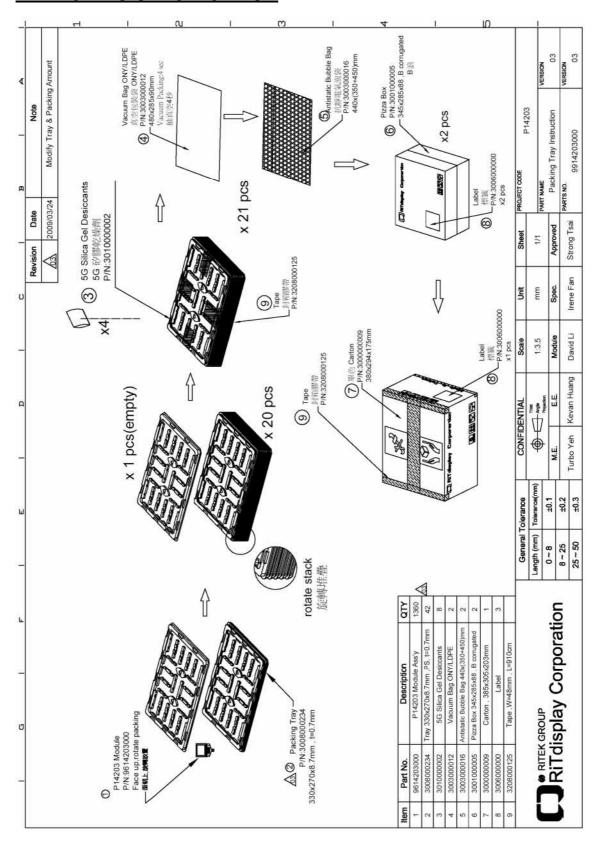
- 1. All measurements shall not be started until the specimens attain to temperature stability.
- 2. All-pixels-on is used as operation test pattern.
- 3. The degradation of Polarizer are ignored for item 1, 4 & 5.

Evaluation criteria


- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: > 50% of initial value.
- 4. Current consumption: within \pm 50% of initial value.

- 18 - REV.: A04 2009/11/26

10. EXTERNAL DIMENSION


- 19 - REV.: A04 2009/11/26

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

11. PACKING SPECIFICATION

- 20 - REV.: A04 2009/11/26

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

12. APPENDIXES

APPENDIX 1: DEFINITIONS

A. DEFINITION OF CHROMATICITY COORDINATE

The chromaticity coordinate is defined as the coordinate value on the CIE 1931 color chart for R, G, B, W.

B. DEFINITION OF CONTRAST RATIO

The contrast ratio is defined as the following formula:

C. DEFINITION OF RESPONSE TIME

The definition of turn-on response time Tr is the time interval between a pixel reaching 10% of steady state luminance and 90% of steady state luminance. The definition of turn-off response time Tf is the time interval between a pixel reaching 90% of steady state luminance and 10% of steady state luminance. It is shown in Figure 2.

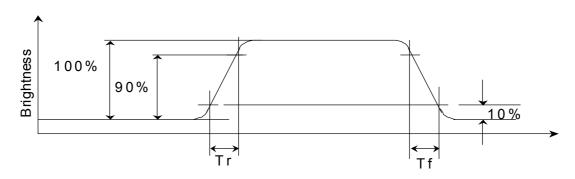


Figure 2 Response time

- 21 -

REV.: A04 2009/11/26

D. DEFINITION OF VIEWING ANGLE

The viewing angle is defined as Figure 3. Horizontal and vertical (H & V) angles are determined for viewing directions where luminance varies by 50% of the perpendicular value.

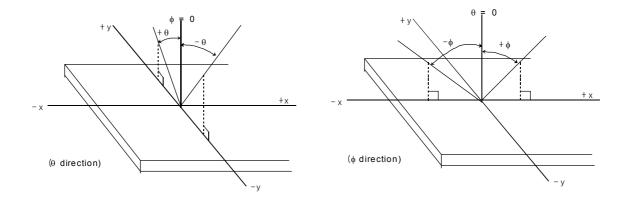
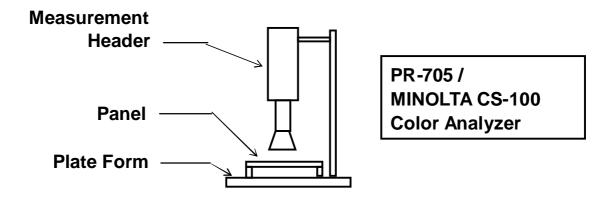


Figure 3 Viewing angle



APPENDIX 2: MEASUREMENT APPARATUS

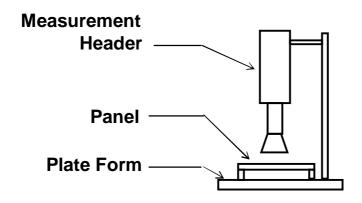
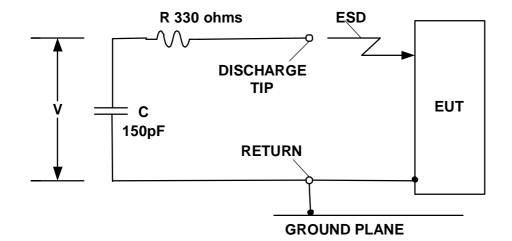

A. LUMINANCE/COLOR COORDINATE

PHOTO RESEARCH PR-705, MINOLTA CS-100

B. CONTRAST / RESPONSE TIME / VIEW ANGLE

WESTAR CORPORATION FPM-510

Westar FPM-510
Display Contrast /
Response time /
View angle Analyzer


- 23 -

REV.: A04 2009/11/26

C. ESD ON AIR DISCHARGE MODE

- 24 -

REV.: A04 2009/11/26

APPENDIX 3: PRECAUTIONS

A. RESIDUE IMAGE

Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.

- 25 - REV.: A04 2009/11/26

Austin New York London Shenzhen Los Angeles

(800) 741-7755

www.usmicroproducts.com

Displays

US Micro Products is an industrial distributor specializing in engineered display solutions. We dedicate ourselves to providing the best in displays for the medical, industrial, gaming, automotive, aerospace, military, and consumer markets.

OLEDs

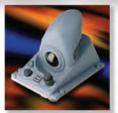
TFT Displays

Open Frame Monitors

Passive LCDs

Multitouch

As a customer, you benefit from our expert knowledge, support and service which allow quick selection and design-in of the best display for your application. On hand stock and demo boards facilitate quick access and evaluation to get you going fast. Our technical sales staff and experienced design engineers provide answers to your questions as well as engineered solutions to solve your display needs.


Peripheral Devices

Our full line of peripheral devices includes keyboards, trackballs, and printers. These rugged industrial products are designed to meet your demanding requirements and are available as both standard and custom solutions.

Keyboards

Trackballs Aerospace Trackballs

Joysticks

Printers

