

PRODUCT SPECIFICATION

PART NUMBER SMP-G104V1-T03

10.4" IAV VGA LED TFT-LCD module with white LED Backlight Unit and a 31-pin and 1ch TTL interface, 640 x 480 resolution & 262,144 colors. The converter for the LED Backlight Unit is built in.

ISSUE DATE	APPROVED BY	CHECKED BY	PREPARED BY		
PROPRIETARY NOTE	THIS SPECIFICATION IS THE PROPERTY OF US MICRO PRODUCTS AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF US MICRO PRODUCTS AND MUST BE RETURNED TO US MICRO PRODUCTS UPON ITS REQUEST.				

USMICROPRODUCTS.COM (800) 741-7755

- CONFIDENTIAL -

- CONTEN	TS -	0
REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 LED CONVERTER		6
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 LED CONVERTER		7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT		12
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 6.3 SCANNING DIRECTION		15
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		18
8. RELIABILITY TEST CRITERIA		21
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		22
10. DEFINITION OF LABELS 10.1 CMO MODULE LABEL		24
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS		25
12. MECHANICAL CHARACTERISTICS		26

www.usmicroproducts.com

Issued Date: Aug. 23, 2010 Model No .: G104V1-T03 Approval

REVISION HISTORY

	ion	Date	Section	Description
0.	0	July 29,2009	All	G104V1-T03 Tentative Spec was first issued.
1.	0	Mar 12,2010		G104V1-T03 Preliminary Spec was first issued.
			1.4	Add the Module Power Consumption value.
			1.5	Add note(1) with module depth typical value 7.8mm without TTL connector and
				9.34 mm with TTL connector.
			2.1	Add plot of temperature v.s relative humidity.
			3.1	Add Max Power Supply Current under white/black pattern.
				Add Power Consumption valueof TFT-LCD
			3.2	Modify Converter Power Supply Current to 0.6A.
				Modify Converter Power Consumption to 7.2W.
			4.1	Remove HS/VS symbol and add converter ADJ/EN symbol.
			5.1	Pin3/4 change to NC.
			6.1	Add Horizontal/Vertical Active Display Term parameter.
				Note(1):remove Hsync/Vsync description.
			6.2	Modify power on/off sequence and delay time request(T6/T7/T10).
			7.2	Modify optical specification value.
				Modify note(4) : gray level L255 to L63.
			9.1	Modify Q'ty per carton and weight.
			9.2	Modify Q'ty per carton and weight.
			10.1	Modify Manufactured Date : Year:1~9, for 2010~2019
			12	Update module drawing to Ver1.0
2.	0	May 17,2010		G104V1-T03 Approval Spec was first issued.
			1.4	Modify the module power consumption
			1.5	Modify module thickness and weight
			3.1	Modify Power supply current of white/black pattern and power consumption
			3.2	Modify LED converter power supply current and power consumption
2.	1	July 13,2010	3.1	Modify power supply current(min)
				450mA -> 390mA, at VCC=3.3V 60Hz white pattern.
				360mA -> 290mA, at VCC=5.0V 60Hz white pattern.
				420mA -> 370mA, at VCC=3.3V 60Hz black pattern.
				330mA -> 280mA, at VCC=5.0V 60Hz black pattern.
2.	2	Aug. 23, '10	3.2	Add cautionary statement to Note(2) about life time vs. operating conditions.
		-	4.1	Modify LED power input connector description. From ACES to Entery

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The G104V1-T03 model is a 10.4" TFT-LCD module with white LED Backlight Unit and a 31-pin and 1ch TTL interface. This module supports 640 x 480 VGA mode and display 262,144 colors. The converter for the LED Backlight Unit is built in.

1.2 FEATURES

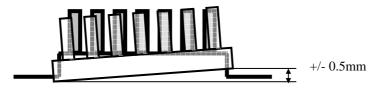
- Wide viewing angle
- High contrast ratio
- VGA (640 x 480 pixels) resolution
- Wide operating temperature
- DE (Data Enable) mode
- CMOS/TTL (Transistor-Transistor Logic) interface
- Reversible-scan direction
- RoHS Compliance
- LED Light Bar Replaceable

1.3 APPLICATION

- TFT LCD Monitor
- Industrial Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	10.4	inch	
Active Area	211.2(H) x 158.4(V)	mm	(1)
Bezel Opening Area	215.4(H) x 161.8(V)	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	640 x R.G.B. x 480	pixel	-
Pixel Pitch	0.33(H) x 0.33(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	Hard coating (3H), Anti-glare (Haze 25%)	-	-
Module Power Consumption	8.94	W	Тур.

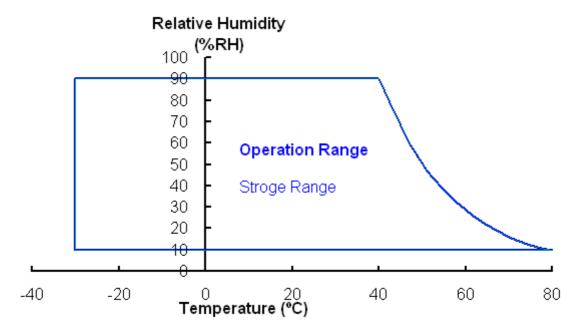

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	225	225.5	226	mm	
Module Size	Vertical (V)	175.8	176.3	176.8	mm	(1)
	Depth (D)	8.84(7.31)	9.34(7.81)	9.84(8.31)	mm	
Weight		345	395	445	g	-
I/F connector mounting		The mounting ir		(2)		
position		the screen cente	-	(2)		

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Module depth 7.8mm does not include TTL connector, with TTL connector is 9.34mm (typical).

(2) Connector mounting position


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Itom	Symbol	Va	Unit	Noto	
Item	Symbol	Min.	Max.	Unit	Note
Operating Ambient Temperature	T _{OP}	-30	+80	°C	
Storage Temperature	T _{ST}	-30	+80	°C	

Note (1) 90 %RH Max. (Ta 40 °C).

- (2) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (3) No condensation.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Itom	Symbol	Val	ue	Lloit	Note		
Item	Symbol	Min.	Max.	Unit	Note		
Power Supply Voltage	VCC	-0.3	7	V	(1)		

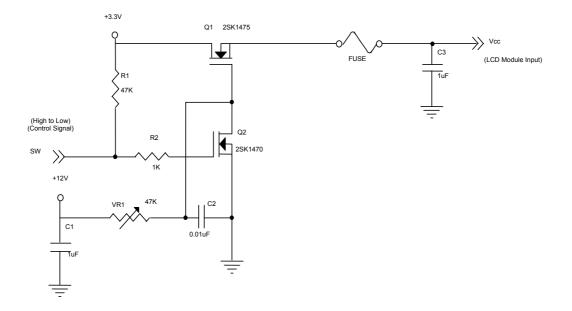
2.2.2 LED CONVERTER

Item	Symbol	Va	lue	Unit	Note	
пет	Symbol	Min.	Max.	Unit	Note	
Converter Voltage	Vi	-0.3	18	V	(1), (2)	
Enable Voltage	EN		5.5	V		
Backlight Adjust	ADJ		5.5	V		

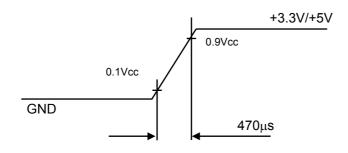
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).

www.usmicroproducts.com

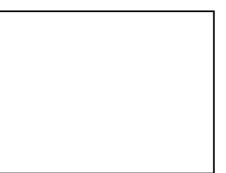

3. ELECTRICAL CHARACTERISTICS

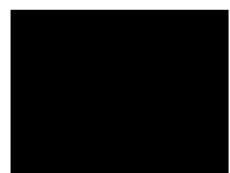
3.1 TFT LCD MODULE


1 TFT LCD MODULE							Ta = 25 ± 2 °C
Parameter	Parameter			Value		Unit	Note
r arameter		Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage		vcc	3.0	3.3	3.6	V	at VCC=3.3V
i ower oupply voltage	Fower Supply voltage		4.75	5.0	5.25	V	at VCC=5.0V
	White		390	490	540	mA	(3)a, at VCC=3.3V, 60Hz
Dower Supply Current	vvinte		290	390	440	mA	(3)a, at VCC=5.0V, 60Hz
Power Supply Current	Black		370	470	520	mA	(3)b, at VCC=3.3V, 60Hz
			280	380	430	mA	(3)b, at VCC=5.0V, 60Hz
Power Consumption		PL		1.617		W	VCC=3.3V, 60Hz
Logic input voltage		V _{IH}	$0.7V_{CC}$	-	V _{CC}	V	
		VL	0	-	$0.3V_{CC}$	V	

Note (1) The module is recommended to operate within specification ranges listed above for normal function.

Note (2) Measurement Conditions:


Vcc rising time is 470µs



- Note (3) The specified power supply current is under the conditions at Ta = 25 ± 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.
 - a. White Pattern

b. Black Pattern

Active Area

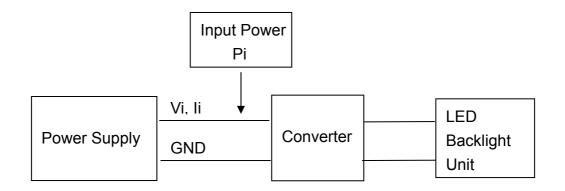
Active Area

INNOLUX CORPORATION

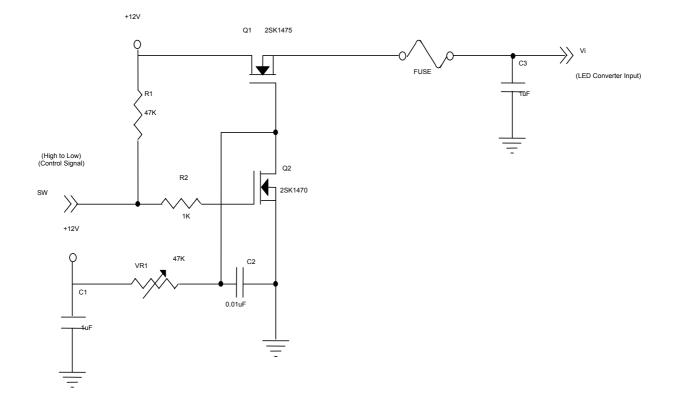
3.2 LED CONVERTER

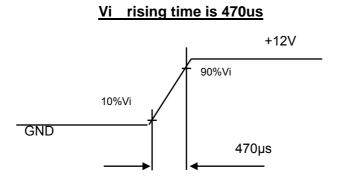
	Ta =	25 ± 2 °C
alua		

Deremet	Parameter				Symbol Value		
Paramet	Farameter			Тур.	Max.	Unit	Note
Converter Power Supply	Voltage	Vi	10.8	12.0	12.6	V	(Duty 100%)
Converter Power Supply	l _i		0.61		Α	(1) Vi = 12V (Duty 100%)	
Converter Power Consum	Pi		7.32			(1) Vi = 12V (Duty 100%)	
EN Control Level	Backlight on		2.0	3.3	5.0	V	
	Backlight off		0		0.8	V	
PWM Control Level	PWM High Level		2.0	3.3	5.0	V	
F WIW CONTION Level	PWM Low Level		0		0.8	V	
PWM Control Duty Ratio		20		100	%		
PWM Control Frequency		f _{PWM}	190	200	210	Hz	
LED Life Time		L	50,000			Hrs	(2)

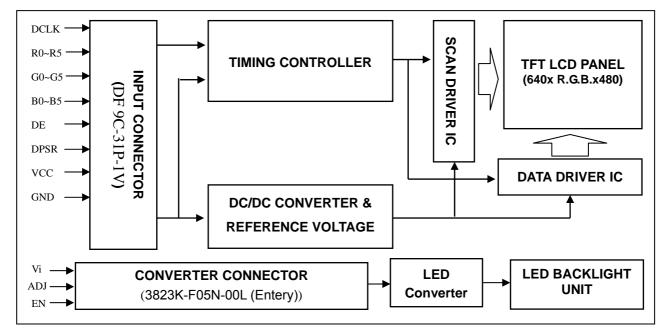

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is defined as the time when it continues to operate under the conditions at


Ta = 25 ±2 and I_{LED} = 80mA_{DC} (LED forward current) until the brightness becomes 50% of


its original value. And minimum LED lifetime is estimated and provided by Nichia in Japan.

Operating LED under high temperature environment will reduce life time and lead to color shift.



Issued Date: Aug. 23, 2010 Model No.: G104V1-T03

- 4. BLOCK DIAGRAM
 - 4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	GND	Ground
2	DCLK	Dot clock
3	N.C.	N.C.
4	N.C.	N.C.
5	GND	Ground
6	R0	Red data (LSB)
7	R1	Red data
8	R2	Red data
9	R3	Red data
10	R4	Red data
11	R5	Red data (MSB)
12	GND	Ground
13	G0	Green data (LSB)
14	G1	Green data
15	G2	Green data
16	G3	Green data
17	G4	Green data
18	G5	Green data (MSB)
19	GND	Ground
20	B0	Blue data (LSB)
21	B1	Blue data
22	B2	Blue data
23	B3	Blue data
24	B4	Blue data
25	B5	Blue data (MSB)
26	GND	Ground
27	DE	Data enable signal
28	VCC	Power supply
29	VCC	Power supply
30	N.C.	Reserved, please keep it floating.
31	DPSR	Selection of scan direction

Note (1) Connector Part No.: DF 9C-31P-1V or equivalent.

12 / 27

5.2 BACKLIGHT UNIT(Converter connector pin)

Pin	Symbol	Description	Remark
1	Vi	Converter input voltage	12V
2	V _{GND}	Converter ground	Ground
3	EN	Enable pin	
4	ADJ	Backlight Adjust	PWM Dimming
5	NC	Not Connect	

Note (1) Connector Part No.: 3823K-F05N-00L (Entery) or equivalent

Note (2) User's connector Part No.: H208K-P05N-02B (Entery) or equivalent

5.3 COLOR DATA INPUT ASSIGNMENT

INNOLUX CORPORATION

INNOLUX US Micro Products ENGINEERED DISPLAY SOLUTIONS

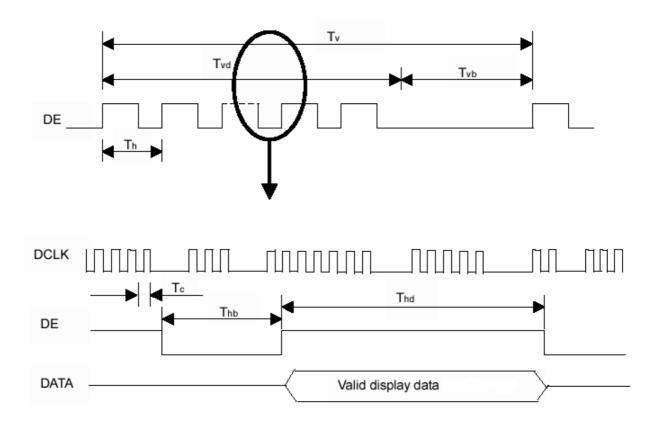
The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	Color	Data Signal																	
			R						Gre							ue			
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1 :
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1 :
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale			÷	÷	-			÷	•	÷							÷	:	
Of			:	:	•	•	-			:		•	:				•	:	
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1		1	1	0 1
	Blue(63)	0	U	0	0	0	0	0	0	0	0	0	0	1			1		I I

Note (1) 0: Low Level Voltage, 1: High Level Voltage

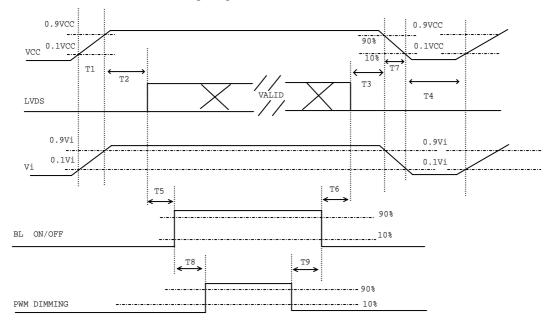
6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Dot Clock	Frequency	Fc	21	25.175	29	MHz	-
	Duty		0.4	0.5	0.6		
Dot Data	Setup Time	Tlvs	8	-	-	ns	-
Dol Dala	Hold Time	Tlvh	12	-	-	ns	-
Horizontal Active Display Term	Frame Rate	Fr	-	60	-	Hz	Tv=Tvd+Tvb
	Total	Τv	730	800	900	Th	-
Tionzonial Active Display Term	Display	Tvd		640		Th	-
	Blank	Tvb	90	160	260	Th	-
	Total	Th	485	525	800	Тс	Th=Thd+Thb
Vertical Active Display Term	Display	Thd		480		Тс	-
	Blank	Thb	5	45	320	Тс	-

Note : (1) This module is operated by DE only mode


(2) Frame rate is 60Hz

INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF sequence

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Donomotor		Value						
Parameter	Min	Тур	Max	Units				
T1	0.5	-	10	ms				
T2	0	-	50	ms				
T3	0	-	50	ms				
T4	500	-	-	ms				
T5	200	-	-	ms				
T6	20	-	-	ms				
T7	5	-	300	ms				
T8	10	-	-	ms				
Т9	10	_	-	ms				

6.3 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

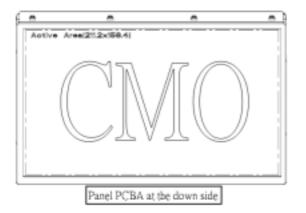


Figure1.Normal scan (DPSR : Low or Open)

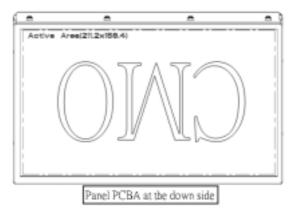


Figure 2. Reverse scan (DPSR : High)

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

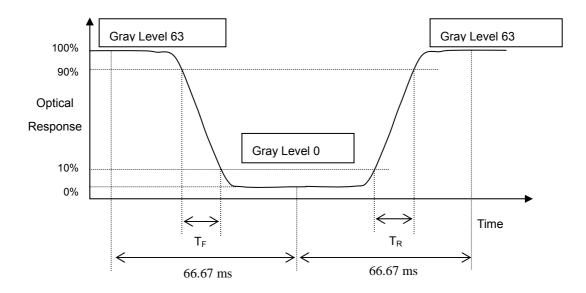
Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	VCC	3.3	V
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"
Converter Voltage	Vi	12	V
Converter Duty		100	%

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Iten	า	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx			0.619		-		
	Reu	Ry			0.357		-		
	Green	Gx			0.333		-		
Color	Green	Gy		Тур -	0.562	Typ +	-	(1), (5)	
Chromaticity	Blue	Bx	θ _x =0°, θ _Y =0°	0.05	0.145	0.05	-	(1), (3)	
	Dide	Ву	CS-1000		0.092		-		
	White	Wx			0.313		-		
		Wy			0.329		-		
Center Luminance of White		L _C		450	500	-	-	(4), (5)	
Contrast Ratio		CR		1000	1500	-	-	(2), (5)	
Response Time	Beenenee Time		θ _x =0°, θ _Y =0°	-	14	19	ms	(3)	
Пезропзе пше		T _F	T_F $\theta_X = 0$, $\theta_Y = 0$		9	14	ms		
White Variation		δW	θ _x =0°, θ _Y =0°	-	-	1.4	-	(5), (6)	
Viewing Angle	Horizontal	θ_x +	CR≥10	80	88	-			
		θ_{x} -		80	88	-	Dog	(1) (E)	
	Vertical	θ +	UR210	80	88	-	Deg.	(1), (5)	
	vertical	θ _Y -		80	88	-			

Note (1) Definition of Viewing Angle ($\theta x, \theta y$):

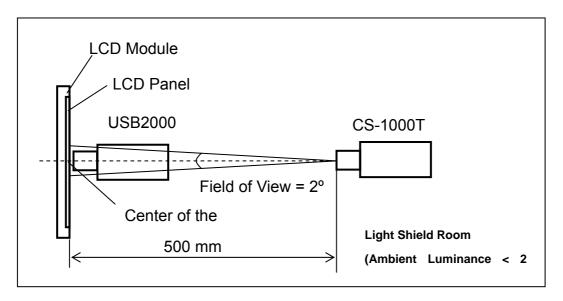

Note (2) Definition of Contrast Ratio, (CR):

The contrast ratio can be calculated by the following expression.

- Contrast Ratio, CR = L63 / L0
- L63: Luminance of gray level 63
- L 0: Luminance of gray level 0
- CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

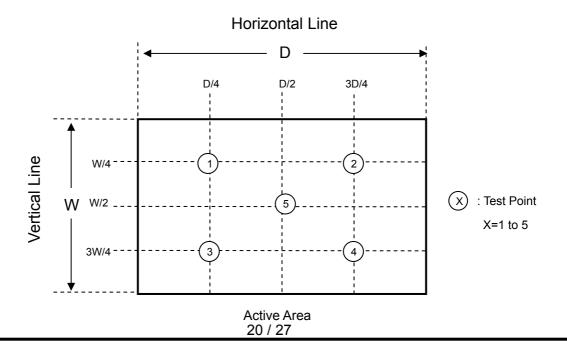
Note (3) Definition of Response Time (T_R, T_F) and measurement method:


Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 63 at center point and 5 points

 $L_{c} = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Measurement Setup:


The LCD assembly should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.

Note (6) Definition of White Variation (δ W):

Measure the luminance of gray level 63 at 5 points

δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]

Version 2.2 800-741-7755

www.usmicroproducts.com

8. Reliability Test Criteria

Test Item	Test Condition	Note
High Temperature Storage Test	80°C, 240 hours	
Low Temperature Storage Test	-30°C, 240 hours]
Thermal Shock Storage Test	-30°C, 0.5hour 80 , 0.5hour; 100cycles, 1hour/cycle	(1)
High Temperature Operation Test	80°C, 240 hours	(2)
Low Temperature Operation Test	-30°C, 240 hours	(4)
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours	
Shock (Non-Operating)	200G, 2ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.	(3) (4)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(3) (4)

Note (1) There should be no condensation on the surface of panel during test.

Note (2) Temperature of panel display surface area should be 85 °C Max.

- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification

is judged before reliability test.

9. PACKAGING

- 9.1 PACKING SPECIFICATIONS
 - (1) 18pcs LCD modules / 1 Box
 - (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm
 - (3) Weight: approximately 11.23Kg (18 modules per box)

9.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 2 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	-
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Angle, 3 Edge, 6 Face, 61 cm	Non Operation

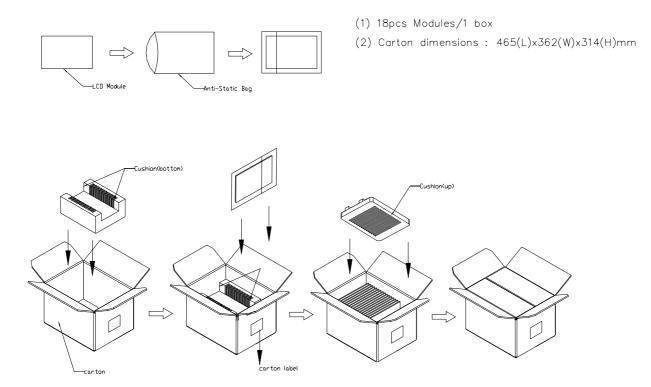
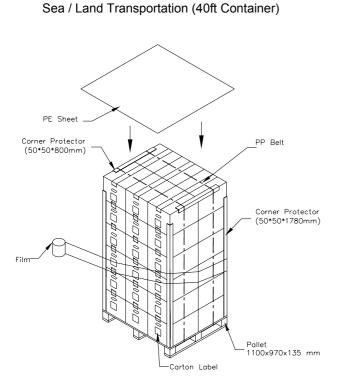
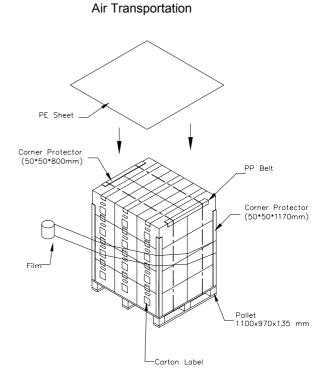
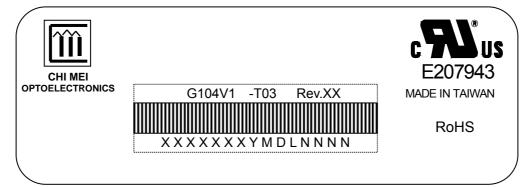



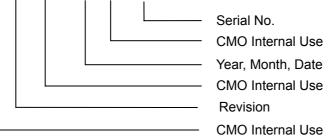
Figure. 9-1 Packing method

Version 2.2 800-741-7755

Issued Date: Aug. 23, 2010 Model No.: G104V1-T03




Figure. 9-2 Packing method


10. DEFINITION OF LABELS

10.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: G104V1 –T03
- (b) Revision: Rev. XX, for example: A1, ...C1, C2 ...etc.
- (c) Serial ID: X X X X X X X Y M D X N N N N

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1^{st} to 31^{st} , exclude I , O and U

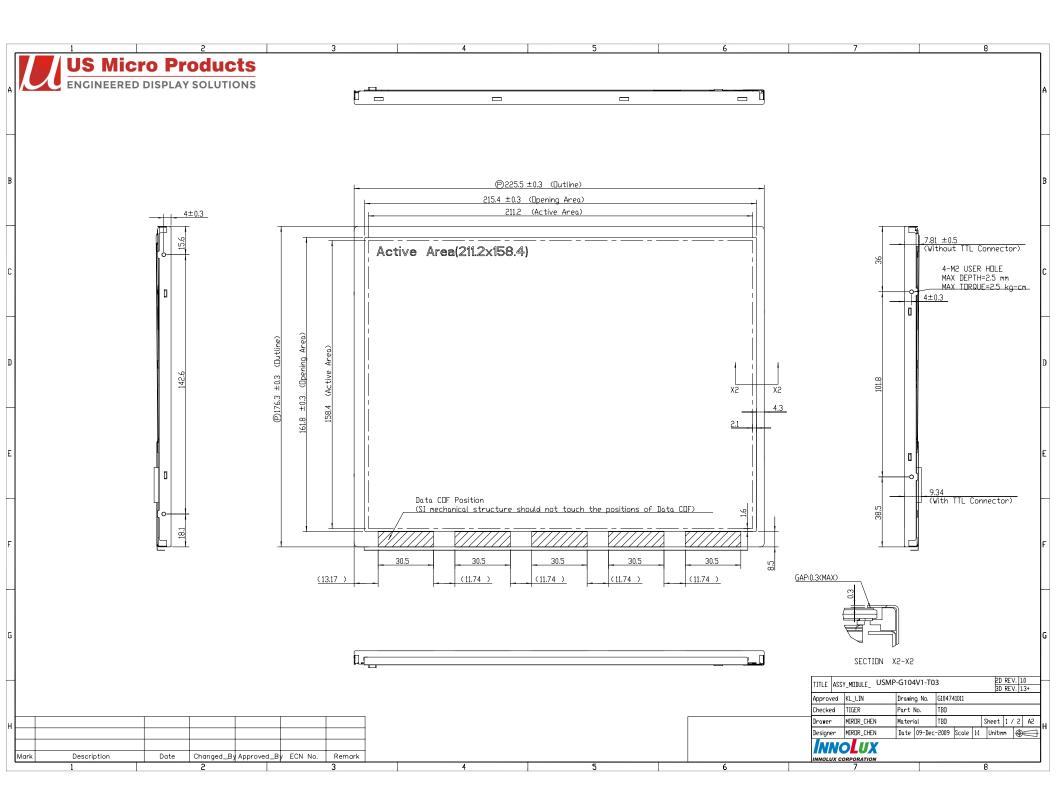
- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product

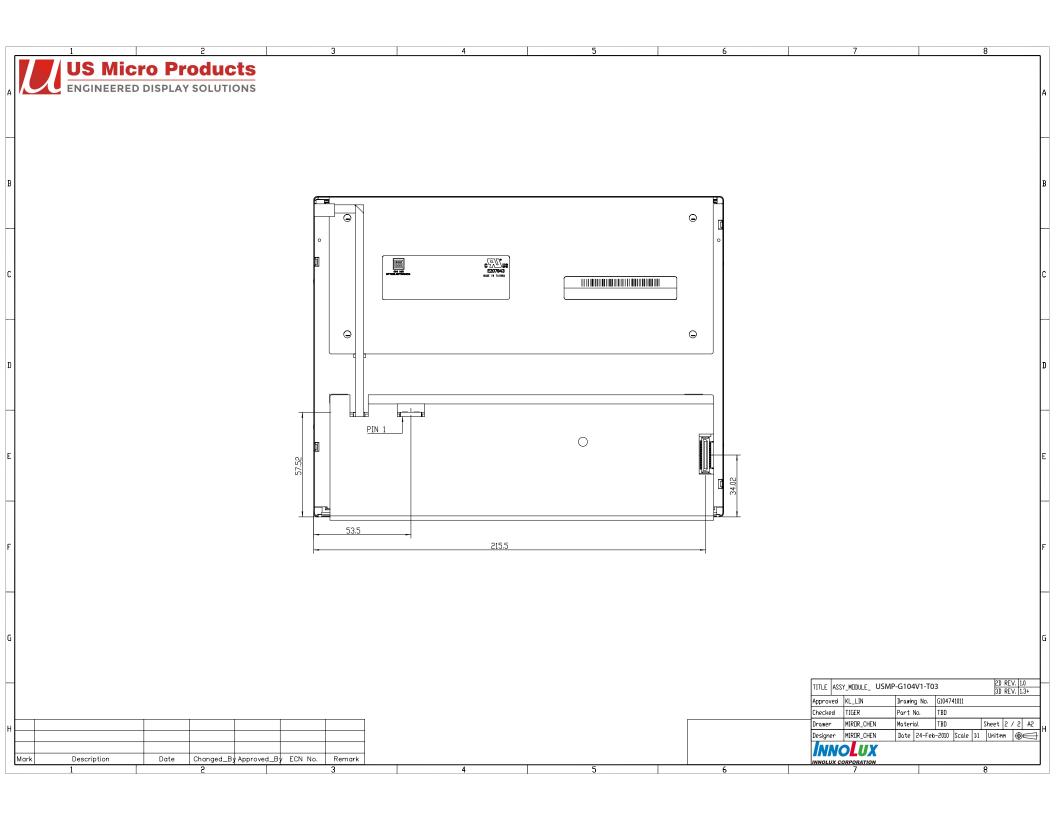
USMP-G104V1-T03

Issued Date: Aug. 23, 2010 Model No.: G104V1-T03

INNOLUX CORPORATION

Approval


11. PRECAUTIONS


11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality, the response time will become slowly.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

11.2 SAFETY PRECAUTIONS

- (1) Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

US Micro Products ENGINEERED DISPLAY SOLUTIONS

800-741-7755 LOS ANGELES · AUSTIN · NEW YORK · LONDON · SHENZHEN · TAICHUNG

DISPLAYS

Engineered to fit your application, US Micro Products offers a wide range of standard and custom LCD solutions. We dedicate ourselves to providing the best in displays for the medical, industrial, gaming, automorive, aerospace, military and consumer markets.

OLEDs

Passive LCDs

TFTs

Multitouch

Open Frame Monitors

Touch Screen

As our customer, you receive expert knowledge, support and service. Our technical sales staff and experienced design engineers provide answers to your questions and engineered solutions to meet your displays needs.

PERIPHERAL DEVICES

Our full line of peripheral devices includes keyboards, trackballs, and printers. These rugged industrial products are designed to meet your demanding requirements and are available as both standard and customs solutions.

Printers

6207 Bee Caves Rd. Suite 330, Austin Tx 78746 US Tel. 800-741-7755 International Tel. 01-512-385-9000 www.usmicroproducts.com