

TFT SPECIFICATION

Part Number	T123-19200720C-82A0
Size	12.3"
Resolution	1920 x 720
Brightness	1000 cd/m²
Contrast	1000:1
Viewing Angle	85/85/85/85
Operating Temp.	-40 ~ 85°C

FOR ADDITIONAL INFORMATION PLEASE CONTACT:

engineering@usmicroproducts.com

Issue Date	Approved by (customer use)	Checked by	Prepared by

PROPRIETARY NOTE: THIS SPECIFICATION IS THE PROPERTY OF US MICRO PRODUCTS AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF US MICRO PRODUCTS AND MUST BE RETURNED TO US MICRO PRODUCTS UPON ITS REQUEST.

(800) 741-7755 www.usmicroproducts.com

TABLE OF CONTENTS

1. GE	NERAL DESCRIPTION	4
2. FE	ATURES	4
3. ME	CHANICAL SPECIFICATION	4
3.1.	LCM	4
	Capacitive Touch Panel	
4. ME	CHANICAL DIMENSION	6
5. MA	XIMUM RATINGS	8
6. EL	ECTRICAL CHARACTERISTICS	8
7. BA	CKLIGHT CHARACTERISTIC	g
8. MC	DULE FUNCTION DESCRIPTION	10
8.1.	LCM PIN Description	10
	CTP PIN Description	
8.3.	Timing characteristics	12
9. PO	WER ON/OFF SEQUENCE	14
9.1.	Power Supply NO/OFF Sequence	14
10. EL	ECTRO-OPTICAL CHARACTERISTICS	15
11. RE	LIABILITY	18
11.1.	MTTF	18
11.2.	TESTS	
11.3.	Color performance	19
12. INS	SPECTION CRITERIA	20
12.1.	Inspection Conditions	20
12.2.	Light Method	20
12.3.	Classification Of Defects	
12.4.	Sampling & Acceptable Quality Level	
12.5.	Definition Of Inspection Area	
12.6.	Items and Criteria	

13. ILL	13. ILLUSTRATION OF LCD DATE CODE					
14. RO	HS COMPLIANT WARRANTY	26				
15. PRI	ECAUTIONS FOR USE	27				
15.1.	Safety	27				
15.2.						
15.3.	Installing LCD Module	27				
15.4.	Precautions For Operation	27				
15.5.	Handling Precautions	28				
	Warranty					
16. RE	VISION HISTORY	29				

1. GENERAL DESCRIPTION

The T123-19200720C-82A0 model is a Color TFT LCD supplied by US Micro Products. This main Module has a 12.3 inch diagonally measured active display area with 1920(RGB) X 720 resolutions. Each pixel is divided into Red, Green and Blue sub-pixels and dots that are arranged in vertical stripes. LCD color is determined with Dithering 16.7M Color signal for each pixel. The T123-19200720C-82A0 has been designed to apply the interface method that enables low power, high speed, and high contrast. The T123-19200720C-82A0 is intended to support applications where thin thickness, wide viewing angle, low power are critical factors and graphic displays are important.

2. FEATURES

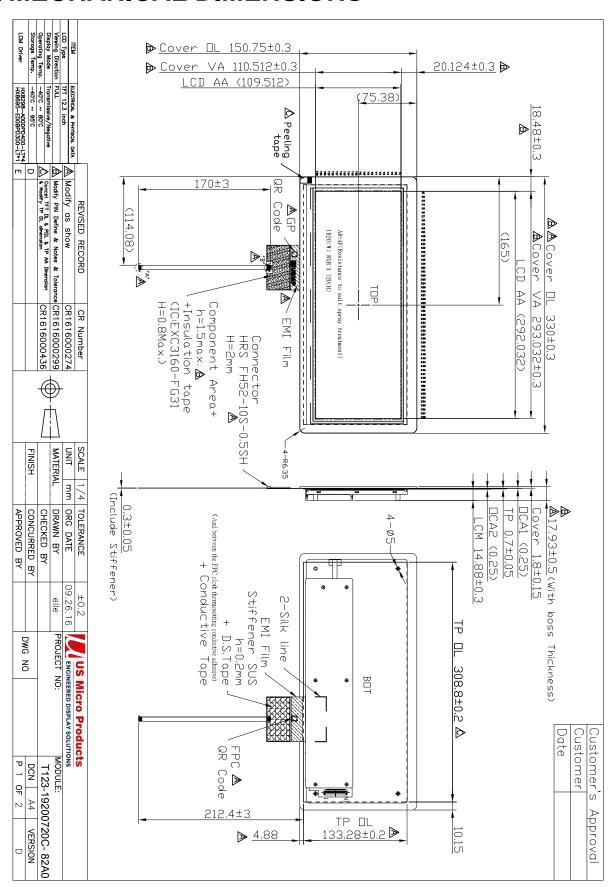
Diamin. Mada	Transmissive Type				
Display Mode	TFT LCD, Normally Black				
Display Format	RGB 1920(RGB) x 720 Strip type				
Color	16.7M color				
Interface	2 ports LVDS data bus ,24bit				
Viewing Direction	All				
Backlight type / color	LED / white * 60				

3. MECHANICAL SPECIFICATION

3.1. LCM

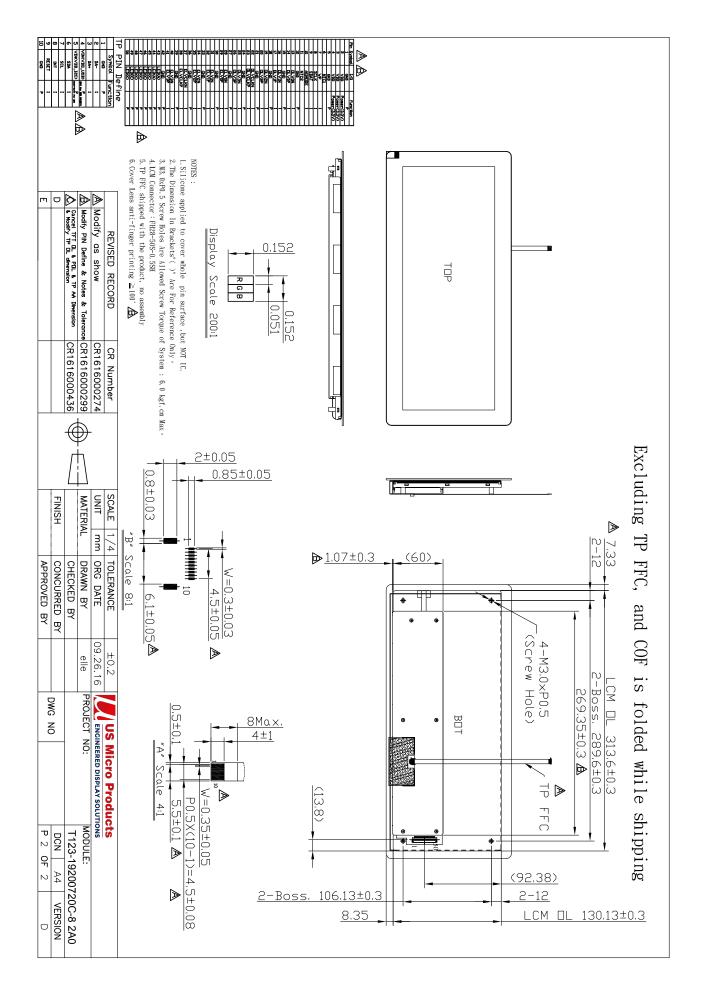
Item	Specifications	Unit
Dimensional outline	330.0(W)×150.75(H)×17.93(D)*	mm
Resolution	1920(R,G,B)×720	dot
Active area	292.032(W)×109.512(H)	mm
Pixel pitch	0.1521(W)×0.1521(H)	mm

^{*} Exclude FPC, Have include polarizer


3.2. Capacitive Touch Panel

Item	Contents	Unit
Туре	Transparent Type Projective Capacitive Touch Panel	
Input Mode	Finger , 2 point	
Structure	Single sides ITO sensor glass with glass cover	
IC	EXI3160	
Cover outline	330.0 x 150.75	mm
TP AA	294.032 x 111.512	mm
Cover VA	293.032 x 110.512	mm
TP thickness	0.7± 0.05	mm
Cover thickness	1.8± 0.15	mm
PSA thickness	0.25 ± 0.02	mm
Total thickness	3.0± 0.5	mm
Surface Treatment	AR and AF	
Interface	USB \ I ² C	
Salt Water Proof	Up to 3.5% salt concentration*	
Nominal finger size (diam.)	8	mm
Accuracy center	±2.5	mm
Accuracy edge	±3.0	mm
Finger separation (center to center)	20	mm
Transmittance	> 85%	
Palm rejection	Yes	
		1.1-
Report rate	100	Hz

^{*}Note: Spraying droplet on the sensing area by handheld sprayer without any ghost points.



4. MECHANICAL DIMENSIONS

6

5. MAXIMUM RATINGS

If the operating condition exceeds the following absolute maximum ratings, the TFT LCD module may be damaged permanently.

Items	Symbol	Min.	Max.	Unit	Note
Power Voltage	VDD	3.0	3.6	Volt	
Operating Temperature	Тор	-40	85	$^{\circ}\mathbb{C}$	Ambient temperature
Storage Temperature	Tst	-40	90	$^{\circ}\mathbb{C}$	Ambient temperature
Humidity	-	-	90	%RH	Note 1)

Note:

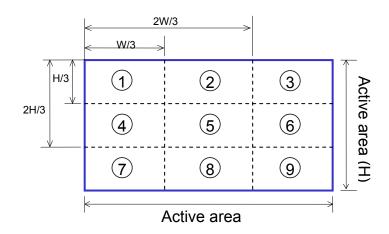
1) Note1: HTHE +65°C + 4°C, %RH : 93% + /- 5%

6. ELECTRICAL CHARACTERISTICS

A. Typical operating conditions

.,		0		Values	11.20	Б .	
Item	Symbol	Min.	Тур.	Max.	Unit	Remark	
Supply Voltage for Source Driver		VDD	3.0	3.3	3.6	٧	
Outrout Malta an	H level	V _{OH}	VDD-0.4		VDD	٧	
Output Voltage	L Level	V_{OL}	VSS		VSS+0.4	V	
Land Mallana	H level	V _{IH}	0.7*VDD	ı	VDD	٧	
Input Voltage	L Level	V_{IL}	VSS	1	0.3*VDD	٧	
Frame Rate		Fr		60		Hz	

7. Backlight Characteristic


lt a m	Ob. al		Values		1.1:4	Test condition
Item	Symbol	Min.	Тур.	Max.	Unit	
LED Current(per chain)	I_{AK}		(80)	(120)	mA	
LED Voltage	V_{AK}		(34)	(50)	V	
LCM Surface	Lo	900	1000		Cd/ m²	
Luminance	Ls	800 1000		Cu/III		
Power consumption			(16)		W	
LCM Surface		70			%	
brightness uniformity	L _D	70			70	
Number of LED		60		pcs		
Connection mode	Р	6Parallel/10Serial				
LED life time		50000	50000			I _{AK} =90mA/chain, 25℃
LED life time		50000				L50%

Note:

- 1.GP suggest using constant current driving this backlight unit .
- 2. The LED chip luminance decrease to be 50% of original
 - a. Test Instrument: BM-7 (Distance =500mm; Field = 1°)
 - b. Light Source: LED * 60 (White)
 - c. Measure Brightness: 1 ~ 9
 - d. Uniformity = (Min. Brightness / Max. Brightness)*100%
 - e. Uniformity \geq 70%

Note:

The maximum difference between LED voltages |(A1-K1)-(A2-K2)| of a single display shall be less than 1.0 V @ 20 mA $^{\circ}$

9

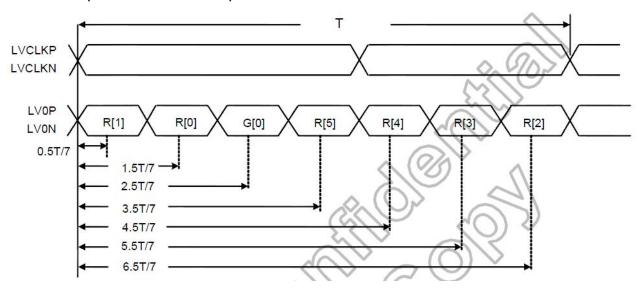
8. MODULE FUNCTION DESCRIPTION

8.1. LCM PIN Description

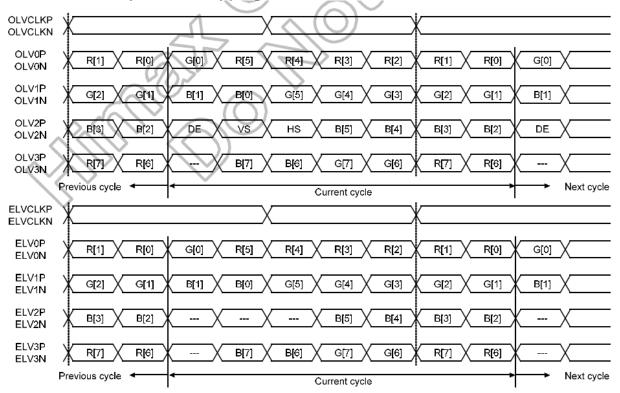
Pin	Symbol	I/O	Function
1	GND	Р	System Ground
2	VDD	Р	System Power(3.3V)
3	VDD	Р	System Power(3.3V)
4	VDD	Р	System Power(3.3V)
5	GND	Р	System Ground
6	NTC1		Connected to NTC Thermistor in Backlight
7	WP	I	Write Protect for EEPROM
8	SCLK	I	Serial clock input for EEPROM
9	SDAT	I	Serial data input for EEPROM
10	AGMODE	I	Aging Mode
11	NTC2		Connected to NTC Thermistor in Backlight
12	GND	Р	System Ground
13	OLV0N	I	LVDS Differential Data Pair
14	OLV0P	I	LVDS Differential Data Pair
15	GND	Р	System Ground
16	OLV1N	I	LVDS Differential Data Pair
17	OLV1P	I	LVDS Differential Data Pair
18	GND	Р	System Ground
19	OLV2N	I	LVDS Differential Data Pair
20	OLV2P	I	LVDS Differential Data Pair
21	GND	Р	System Ground
22	OLVCLKN	I	LVDS Differential Clock Pair
23	OLVCLKP	ı	LVDS Differential Clock Pair
24	GND	Р	System Ground
25	OLV3N	I	LVDS Differential Data Pair
26	OLV3P	ı	LVDS Differential Data Pair
27	GND	Р	System Ground
28	ELV0N	I	LVDS Differential Data Pair
29	ELV0P	I	LVDS Differential Data Pair

1		7
GND	Р	System Ground
ELV1N	I	LVDS Differential Data Pair
ELV1P	I	LVDS Differential Data Pair
GND	Р	System Ground
ELV2N	I	LVDS Differential Data Pair
ELV2P	I	LVDS Differential Data Pair
GND	Р	System Ground
ELVCLKN	I	LVDS Differential Clock Pair
ELVCLKP	I	LVDS Differential Clock Pair
GND	Р	System Ground
ELV3N	I	LVDS Differential Data Pair
ELV3P	I	LVDS Differential Data Pair
GND	Р	System Ground
LED(A)	Р	LED_A Anode
LED(A)	Р	LED_A Anode
LED(K)	Р	LED_K Cathode
	ELV1N ELV1P GND ELV2N ELV2P GND ELVCLKN ELVCLKP GND ELV3N ELV3P GND LED(A) LED(A) LED(K) LED(K) LED(K) LED(K) LED(K)	ELV1N I ELV1P I GND P ELV2N I ELV2P I GND P ELVCLKN I ELVCLKP I GND P ELV3N I ELV3P I GND P LED(A) P LED(A) P LED(K) P

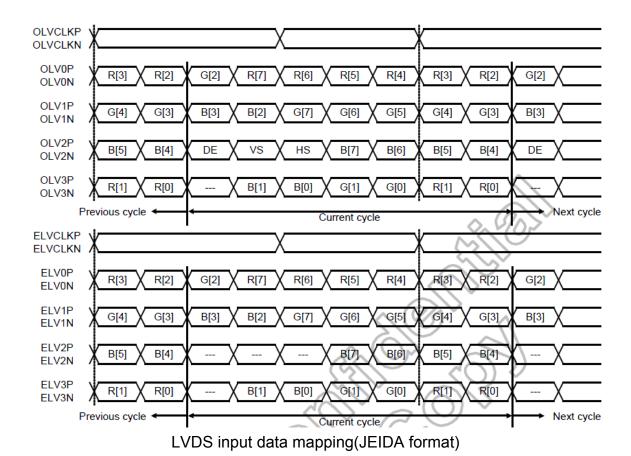
8.2. CTP PIN Description


1	GND	Р	Digital Ground	
2	DA-	ı	USB D-	
3	DA+	I	USB D+	
4	V _{IN} (VDD_USB)	Р	Digital Power (5V) for USB (±0.25V)	
5	V _{IN} (VDD_I2C)	Р	Digital Power (3.3V~3.6V) for I2C	
6	SDA	ı	A serial data pin for I2C interface	
7	SCL	ı	A serial clock pin for I2C interface	
8	INT	ı	Interrupt output pin to host	
9	RESET	I	Hardware reset pin	
10	GND	Р	Digital Ground	

8.3. Timing characteristics


8.3.1.LVDS receiver

Ldeal strobe position for LVDS input

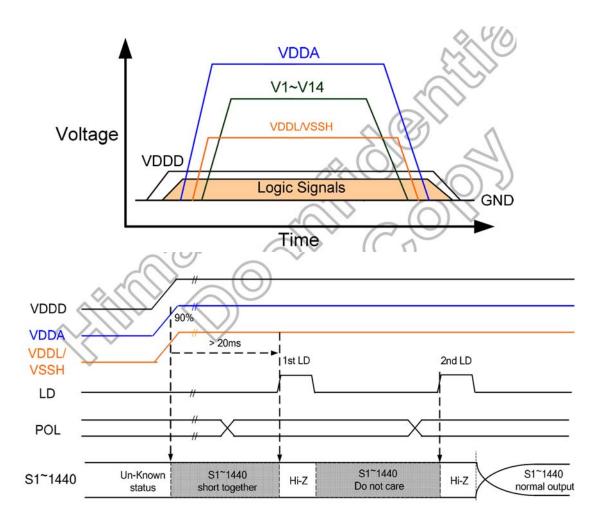

LVDS input data ideal storbe position

8.3.2.LVDS input data mapping

LVDS input data mapping(VESA format)

8.3.3.LVDS input port mirror by ROM code setting

Туре	0	1	2	3	4	5	6	7
Pin no.	Default	Port swap	Mirror	Mirror & port swap	Single1	Single2	Mirror & single1	Mirror & single2
7	OLV0N	ELV0N -	OLV3P	ELV3P	LV0N	-	LV3P	-
8	OLV0P	ELV0P	OLV3N	ELV3N	LV0P	-	LV3N	-
9	OLV1N	ELV1N	OLVCLKP	ELVCLKP	LV1N	-	LVCLKP	-
10	OLV1P	ELV1P	OLVCLKN	ELVCLKN	LV1P	-	LVCLKN	-
11	OLV2N	ELV2N	OLV2P	ELV2P	LV2N	-	LV2P	-
12	OLV2P	ELV2P	OLV2N	ELV2N	LV2P	-	LV2N	-
13	OLVCLKN	ELVCLKN	OLV1P	ELV1P	LVCLKN	-	LV1P	-
14	OLVCLKP	ELVCLKP	OLV1N	ELV1N	LVCLKP	-	LV1N	-
15	OLV3N	ELV3N	OLV0P	ELV0P	LV3N	-	LV0P	-
16	OLV3P	ELV3P	OLV0N	ELV0N	LV3P	-	LV0N	-
19	ELV0N	OLV0N	ELV3P	OLV3P	-	LV0N	-	LV3P
20	ELV0P	OLV0P	ELV3N	OLV3N	-	LV0P	-	LV3N
21	ELV1N	OLV1N	ELVCLKP	OLVCLKP	-	LV1N	-	LVCLKP
22	ELV1P	OLV1P	ELVCLKN	OLVCLKN	-	LV1P	-	LVCLKN
23	ELV2N	OLV2N	ELV2P	OLV2P	-	LV2N	-	LV2P
24	ELV2P	OLV2P	ELV2N	OLV2N	-	LV2P	-	LV2N
25	ELVCLKN	OLVCLKN	ELV1P	OLV1P	-	LVCLKN	-	LV1P
26	ELVCLKP	OLVCLKP	ELV1N	OLV1N	-	LVCLKP	-	LV1N
27	ELV3N	OLV3N	ELV0P	OLV0P	-	LV3N	-	LV0P
28	ELV3P	OLV3P	ELV0N	OLV0N	-	LV3P	-	LV0N



9. POWER ON/OFF SEQUENCE

Special care should be taken that the large current may cause a permanent damage to the LSI when voltage is applied to the LCD drive power supply terminals in the condition that the logic power supply terminals are floating.

9.1. Power Supply NO/OFF Sequence

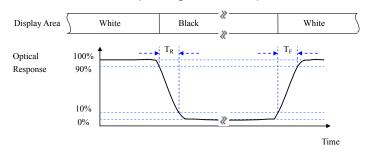
The following sequences are recommended from the image display to the power supply OFF.

10.ELECTRO-OPTICAL CHARACTERISTICS

The following items are measured under stable conditions. The optical characteristics should be measured in dark room or equivalent state with the methods shown in Note 1.

Parameter		Symbol	Min.	Тур.	Max.	Units	Note
Luminance of white		Lwh	800	1000	-	cd/m ²	3
Unifo	rmity		70			%	
Contra	st Ratio	CR	700	1000	-	-	5
	White	Х		(0.283)			
	vviiite	у		(0.305)		_	
	Red	Х		(0.645)			
CIE color	rtcu	у		(0.327)		_	ВМ7;
Coordinates	Green	Х		(0.268)		_	2° angle
	Oiceii	у		(0.603)			
	Blue	Х		(0.135)			
	Dide	у		(0.122)			
NT	NTSC			(70)		%	
Respon	Response Time			25	40	ms	4 25℃
	Y axis down (ψ=180°)	ψ _L	80	85			
Viewing Angle	Y axis up (ψ=0°)	ϕ н	80	85		Degree	_
(with Polarizer	X axis right (ψ=90°)	heta R	80	85		Degree	5
	X axis left (ψ=270°)	heta L	80	85			

Note:


1. Test equipment setup

After stabilizing and leaving the panel alone at a given temperature for 30 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-5(fast) with a viewing angle of 2° at a distance of 50cm and normal direction.

2. Definition of response time: T_R and T_F

The figure below is the output signal of the photo detector.

3. Definition of contrast ratio:

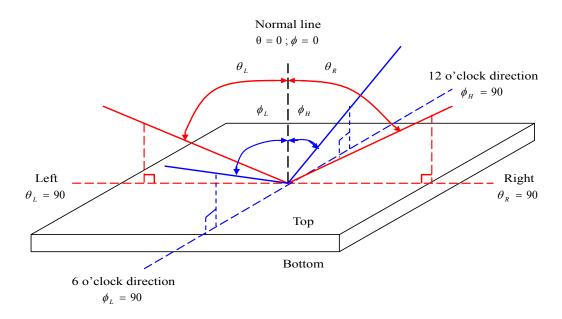
Contrast ratio (CR) = Brightness measured when LCD is at "white state"

Brightness measured when LCD is at "black state"

White $V_i = V_{i50\%} \pm 1.5V$

Black V_i=V_{i50%} ∓ 2.0V

"±" means that the analog input signal swings in phase with VCOM signal.


"#" means that the analog input signal swings out of phase with VCOM signal.

Vi50%: The analog input voltage when transmission is 50%.

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

- 4. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.
- Definition of viewing angle:

CTP OPTICAL CHARACTERISTIC

Item	Specifications	Remark	
Transparency	≥85% @wave length 550nm	Note 1	
Haze	≤ 2.5%	Note 1	

Note 1: After stabilizing the panel, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by NIPPON NDH-5000.

11.RELIABILITY

11.1.MTTF

The LCD module shall be designed to meet a minimum MTTF value of 50,000 hours with normal condition. (25°C in the room without sunlight; not include life time of backlight)

11.2.TESTS

NO.	ITEM	CONDITION	CRITERION
1	High Temperature Operating	+80°C 240 hrs	No defect of Electronics Function
2	Low Temperature Operating	-30°C 240 hrs	In Room Temperature Are Allowable.
3	High Temperature Non-Operating	+80℃ 240 hrs	∘ IDD of LCD in
4	Low Temperature Non-Operating	-30°C 240 hrs	Pre-and post-test should follow
5	High Temperature/ Humidity Operating	+60°C ,90%RH ,500hrs	specification
6	Temperature Shock Non-Operating	-30°C ← → 80°C (30min) (5min) (30min) 50cycles, 500 cycles, (Only Soldering, Sn no Creak)	
7	Vibration (TBD, ES1 Check)	Sinewave 8~33.3 Hz: 1.3mm 33.3~400 Hz: 3G (Z-axis 2hr) TFT (X-axis 4hr)	
8	Electrostatic Discharge Test Non-Operating	HBM: ±2kV	
9	Vibration (Non-operation)	Sinewave 8~33.3 Hz: 1.3mm 33.3~400 Hz: 3G Duration: 4 hours for each direction	

10	Mechanical Shock	100G, 6ms, ±X,±Y,±Z Duration:3 times for each direction Reference: IEC68-2-27Ea	
11	Q-sun Test	Lamp: Xenon-Arc Filter: Daylight Irradiance: 0.68W/m²/nm at 340 nm Exposure Cycle: 102 minutes light at 65°C Black Standard Temperature; 18 minutes light and water spray. Duration: 1000 hours Reference: ISO4892-2	
12	Salt Fog Test	1. Temp. of the chamber:35°C 2. Temp. of the saturation tower: 47°C 3. Liquor: 5% NaCl (by weight) 4. PH value of the liquor:6.5 (25C°) Duration: 360 hours	

- Note 1: Test after 24 hours in room temperature.
- Note 2: The sampling above is individually for each reliability testing condition.
- Note 3: The color fading of polarizing filter should not care.
- Note 4: All of the reliability testing chamber above, is using D.I. water. (Min value: $1.0 \text{ M}\Omega\text{-cm}$)

Note 5: In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after software resetting, it would be judged as a good part.

11.3.Color performance

		1
No.	ITEM	Criterion (initial)
1	Luminance	>50%
2	NTSC	>50%
3	Contrast Ratio	>50%

12.INSPECTION CRITERIA

12.1.Inspection Conditions

12.1.1.Environmental conditions

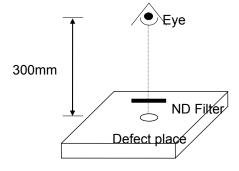
The environmental conditions for inspection shall be as follows

Room temperature: 23±5°C

Humidity: 50±20%RH

12.1.2. The external visual inspection

With a single 1000±200lux fluorescent lamp as the light source, the inspection was in the distance of 30cm or more from the LCD to the inspector's eyes.


12.2.Light Method

12.2.1.Environment lamp under 1000±200 lux, Viewing direction for inspection over 30

CIII

12.2.2. The distance from eye to defect around 300mm, the distance from ND Filter to

defect around 25~30mm

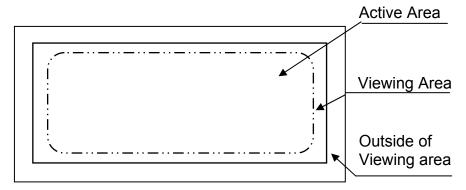
12.3 Classification Of Defects

12.3.1.Major defect

A major defect refers to a defect that may substantially degrade usability for product applications.

12.3.2.Minor defect

A minor defect refers to a defect which is not considered to be able substantially degrade the product application or a defect that deviates from existing standards almost unrelated to the effective use of the product or its operation. Notes: If the LCD/LCM 's cosmetic and display performance do not specify in "inspection criterion", it should be based on these delivered samples.


12.4. Sampling & Acceptable Quality Level

Level II, MIL-STD-105E

	Major	Minor
Cosmetic	1.0 %	1.5 %
Electrical-display	0.4%	0.65 %

12.5. Definition Of Inspection Area

V.A: Viewing Area A.A: Active Area

12.6. Items and Criteria

12.6.1. Visual inspection criterion in cosmetic

(1) Glass defect

No	Defect	Criteria	Remark
1	Dimension (Minor)	By engineering diagram	Y Z (
2	Cracks (Major)	Extensive crack 【Reject】	

(2) LCM appearance defect with in V.A

No	Item	Criteria		Remark
	Round type	Spec.	Permissible Q'ty	
		φ <0.20mm		L: Length, W: Width
1		0.20 mm $\leq \phi \leq 0.60$ mm	5	2. Disregard if out of <u>V.A</u> .
		0.60mm< <i>ψ</i>	0	L
	Line type	Defect Spec.	Permissible Q'ty	1: L: Length, W: Width
	(Minor)	W≦0.10mm and L≦10mm	Disregard	2: Disregard if out of <u>V.A</u>
2		L≦10mm and 0.10mm <w≦0.25mm< td=""><td>4</td><td></td></w≦0.25mm<>	4	
		W>0.25mm or L>10mm	0	V
3	Corner chip (Minor)	X≦3.0mm, Y≦3.0mm,Z≦T	[Disregard]	x z †
4	Edge chip (Minor)	$X \leq 3.0$ mm, $Y \leq 3.0$ mm, $Z \leq T$	【Disregard】	T
5	Crack (Major)	Not allowed		

	Newton's ring	Defect Spec.	Permissible Q'ty	Under day light
6	(Minor)	ϕ \leq 7mm	Disregard	
		φ >7mm	0	° 0°~60
7	Chipping (Minor)	W≦ 0.2 mm	Disregard	********
8	Saw edge (Minor)	W≦0.3mm	Disregard	
	Ink peel off · Pin hole	$\phi \leq ~0.2$ mm	Disregard	
9	(Minor)	$\phi>$ 0.2mm	0 (fix with print)	

(3) FPC

No	Defect	Criteria		Remark
1	Copper peeling	Copper peeling	[Reject]	
	(Major)			

(4) Black tape

No	Defect	Criteria	Remark
1	Shift	IC exposed 【Reject】	
	(Minor)		
5	No black tape	No black tape 【Reject】	
	(Minor)		

(5) Silicon

No	Defect	Criteria		Remark
_	Amount of silicon	ITO exposed	【Reject】	
ı	(Minor)			

(6) Bezel

					
No	Defect	Criteria		Remark	
4	Oxidized spot	Oxidized spot, rust	【Reject】		
I	(Minor)				
	Outline	By engineering diagram			
2	deformation				
	(Major)				
	Greasiness	Greasiness	【Reject】		
3	(Minor)				
	Spots, round Type	H≦By engineering diagram	1	H=Total height (thickness)	
4	(Minor)		[Disregard]		
_	Plating	Bubble, peeling	【Reject】		
5	(Minor)				

12.6.2. Visual inspection criterion in electrical display

No	1	Criteria		Remark	
1	No display (Major)	Not allowed			
2	Missing line (Major)	Not allowed			
3	Darker or lighter line (Major)	Not allowed			
4	Weak line (Minor)	By limit sample			
	Bright / Dark point (Minor)		Total	1.1sub-pixel: 1R or 1G or 1B 2.Point defect area ≥ 1/2	
5		Bright point	2	sub pixel.	
		Dark dot point	3	1/5 3/5 1/5 1/5 B Area	
		Bright +Dark point	4	3/5 A Area	
		Two adjacent dot	5	1/5	

6	Weak Bright point	can not see through 5% ND filter		
	Round type	Spec.	Permissible Q'ty	1. φ =(L+W)/2,
_	(Minor)	ϕ <0.20mm	Disregard	L: Length, W: Width
7		0.20 mm $\leq \phi \leq 0.60$ mm	6	2. Disregard if out of A.A.
		0.60 mm< ϕ	0	
	Line type	Defect Spec.	Permissible Q'ty	1. L: Length, W: Width
	(Minor)	W≦0.10mm and L≦10mm	Disregard	2. Disregard if out of A.A.
0		0.10mm <w≦0.30mm and<="" td=""><td>_</td><td>\leftarrow L \rightarrow</td></w≦0.30mm>	_	\leftarrow L \rightarrow
8		L≦10mm	5	
		W>0.25mm or L>10mm	0	W
	Mura	By 5% ND filter invisible		
9	(Minor)			

12.6.3.Others

- 1. Issues that are not defined in this document shall be discussed and agreed with both parties. (Customer and supplier)
- 2. Unless otherwise agreed upon in writing, the criteria shall be applied to both parties. (Customer and supplier)
- 3. Polarizer, more than 0.5mm in size reduction rejected.

13.ILLUSTRATION OF LCD DATE CODE

14.Rohs Compliant Warranty

RoHs Hazardous substances including:

- Cd< 100 ppm
- Pb< 1000 ppm
- Hg< 1000 ppm
- Cr +6 < 1000 ppm
- PBDE < 1000 ppm
- PBB < 1000 ppm

15.PRECAUTIONS FOR USE

15.1.Safety

- (1) Do not swallow any liquid crystal, even if there is no proof that liquid crystal is poisonous.
- (2) If the LCD panel breaks, be careful not to get liquid crystal to touch your skin.
- (3) If skin is exposed to liquid crystal, wash the area thoroughly with alcohol or soap.

15.2. Storage Conditions

- (1) Store the panel or module in a dark place where the temperature is 23±5°C and the humidity is below 50±20%RH.
- (2) Store in anti-static electricity container.
- (3) Store in clean environment, free from dust, active gas, and solvent.
- (4) Do not place the module near organics solvents or corrosive gases.
- (5) Do not crush, shake, or jolt the module.
- (6) Do not exposed to direct sun light of fluorescent lamps.

15.3.Installing LCD Module

Attend to the following items when installing the LCM.

- (1) Cover the surface with a transparent protective plate or touch panel to protect the polarizer and LC cell.
- (2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ±0.1mm.

15.4. Precautions For Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (Vo). Adjust Vo to show the best contrast.
- (2) Driving the LCD in the voltage above the limit will shorten its lifetime.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) When turning the power on, input each signal after the positive/negative voltage becomes stable.

(5) Do not apply water or any liquid on product which composed of T/P.

15.5. Handling Precautions

- (1) Avoid static electricity which can damage the CMOS LSI; please wear the wrist strap when handling.
- (2) The polarizing plate of the display is very fragile. so, please handle it very carefully.
- (3) Do not give external shock.
- (4) Do not apply excessive force on the surface; it may cause display abnormal.
- (5) Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- (6) Do not use ketonics solvent & Aromatic solvent, use with a soft cloth soaked with a cleaning naphtha solvent.
- (7) Do not operate it above the absolute maximum rating.
- (8) Do not remove the panel or frame from the module.
- (9) Do not apply water or any liquid on product, which composed of T/P.

15.6.Warranty

- (1) The period is within 12 months since the date of shipping out under normal using and storage conditions.
- (2) The warranty will be avoided in case of defect induced by customer.

16.REVISION HISTORY

Version	Revise record	Date
Α	New version	2016/04/07
В	Modify PIN Description and MECHANICAL DIMENSION	2016/04/08
С	Modify RELIABILITY	2016/05/19
D	Modify PIN Description	2016/05/30
Е	Modify Timing characteristics	2016/05/31
F	Modify Items and Criteria	2016/06/02
G	Modify LCM PIN Description	2016/06/08
Н	Modify Backlight Characteristic	2016/06/17
I	Modify LCM PIN Description and MECHANICAL DIMENSION	2016/06/22
J	Modify LCM PIN Description	2016/06/24
K	Modify LCM PIN Description and Mechanical dimension	2016/07/05
L	Modify LCM PIN Description	2016/07/06
М	Modify LCM PIN Description and Mechanical dimension	2016/07/20
N	Modify Mechanical dimension	2016/08/23
0	Modify Items and Criteria and Mechanical dimension	2016/09/20