

PMOLED SPECIFICATION

Upgrade your product with the bright and beautiful colors of a PMOLED

Part Number	USMP-P23903
Size	1.46"
Panel Size	33.5 (W) x 26.284 (H)
Active Area	26.279 (W) x 26.284
Color	(H) Full Color
Dot Size	0.0435 (W) x 01855
Dot Pitch	(H) 0.0685 (W) x 0.2055
Thickness	1.42 +- 0.1
Bonding	Chip on Flex
IC	SSD1351
Interface	8-bit 6800/8080 series
Connection Method	Parallel, SPI Connector
Brightness	90 nits - Typical
Contrast	2000:1

OLED Benefits:

- Great outdoor readability
- Affordable
- Low profile (very thin)
- Low power consumption
- · Bright and vivid colors
- Deeper blacks

FOR ADDITIONAL INFORMATION PLEASE CONTACT:

engineering@usmicroproducts.com

Manufactured for US Micro Products by Rit Display Corporation

Issue Date	Approved by (customer use)	Checked by	Prepared by

PROPRIETARY NOTE: THIS SPECIFICATION IS THE PROPERTY OF US MICRO PRODUCTS AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF US MICRO PRODUCTS AND MUST BE RETURNED TO US MICRO PRODUCTS UPON ITS REQUEST.

(800) 741-7755 www.usmicroproducts.com

REVISION RECORD

REV.	REVISION DESCRIPTION	REV. DATE	REMARK
X01	INITIAL RELEASE	2010. 03. 23	
X02	 Add the lifetime specifications Add the panel electrical specifications Add the application circuit 	2010. 03. 30	Page 6, 7, 8 & 14
X03	Modify FPC dimensionAdd double sides tape	2010. 05. 11	Page 4, 5 & 16
X04	 Add silk line on FPC Modify double tape dimension Add Mylar Add bar code label 	2010. 10. 13	Page 16
A01	 Transfer from X version Add the information of module weight Add the packing specification 	2012. 11. 15	Page 5 & 17

CONTENTS

ITEM	PAGE
1. SCOPE	4
2. WARRANTY	4
3. FEATURES	4
4. MECHANICAL DATA	5
5. MAXIMUM RATINGS	6
6. ELECTRICAL CHARACTERISTICS	8
6.1 D.C ELECTRICAL CHARACTERISTICS	
6.2 ELECTRO-OPTICAL CHARACTERISTICS	
7. INTERFACE	9
7.1 FUNCTION BLOCK DIAGRAM	
7.2 PANEL LAYOUT DIAGRAM	
7.3 PIN ASSIGNMENTS	
7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP	
7.5 INTERFACE TIMING CHART	
8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT	13
8.1 POWER ON / OFF SEQUENCE	
8.2 APPLICATION CIRCUIT	
8.3 COMMAND TABLE	
9. RELIABILITY TEST CONDITIONS	15
10. EXTERNAL DIMENSION	16
11. PACKING SPECIFICATION	17
12. APPENDIXES	18

- 3 - REV.: A01 2012/11/15

1. SCOPE

The purpose of this specification is to define the general provisions and quality requirements that apply to the supply of display cells manufactured by RiTdisplay. This document, together with the Module Ass'y Drawing, is the highest-level specification for this product. It describes the product, identifies supporting documents and contains specifications.

2. WARRANTY

RiTdisplay warrants that the products delivered pursuant to this specification (or order) will conform to the agreed specifications for twelve (12) months from the shipping date ("Warranty Period"). RiTdisplay is obligated to repair or replace the products which are found to be defective or inconsistent with the specifications during the Warranty Period without charge, on condition that the products are stored or used as the conditions specified in the specifications. Nevertheless, RiTdisplay is not obligated to repair or replace the products without charge if the defects or inconsistency are caused by the force majeure or the reckless behaviors of the customer.

After the Warranty Period, all repairs or replacements of the products are subject to charge.

3. FEATURES

- Small molecular organic light emitting diode.
- Color: 262K color and 65K colors
- Panel matrix : 128*128Driver IC : SSD1351
- Excellent quick response time.
- Extremely thin thickness for best mechanism design: 1.71mm
- High contrast : 2000:1
- Wide viewing angle: 160°
- Strong environmental resistance.
- 8-bit 6800-series Parallel Interface, 8-bit 8080-series Parallel Interface, Serial Peripheral Interface.
- Wide range of operating temperature : -40 to 70 ℃.
- Anti-glare polarizer.

- 4 - REV.: A01 2012/11/15

4. MECHANICAL DATA

NO	ITEM	SPECIFICATION	UNIT
1	Dot Matrix	128 (W) x (RxGxB) x 128 (H)	dot
2	Dot Size	0.0435 (W) x 0.1855 (H)	mm ²
3	Dot Pitch	0.0685 (W) x 0.2055 (H)	mm ²
4	Aperture Rate	57	%
5	Active Area	26.279 (W) x 26.284 (H)	mm ²
6	Panel Size	33.5 (W) x 33.5 (H)	mm ²
7*	Panel Thickness	1.42 ± 0.1	mm
8	Module Size	33.5 (W) x 49.83 (H) x 1.71 (D)	mm ³
9	Diagonal A/A size	1.46	inch
10	Module Weight	4.04 ± 10%	gram

^{*} Panel thickness includes substrate glass, cover glass and UV glue thickness.

5. MAXIMUM RATINGS

ITEM	MIN	MAX	UNIT	Condition	Remark
Supply Voltage (V _{CI})	-0.3	4	٧	Ta = 25 ℃	IC maximum rating
Supply Voltage (Vcc)	10	19	٧	Ta = 25°C	IC maximum rating
Supply Voltage (VDDIO)	-0.5	V _{CI}	V	Ta = 25 ℃	IC maximum rating
Operating Temp.	-40	70	°C		
Storage Temp	-40	85	°C		
Humidity	-	85	%		
Life Time	11,000	-	Hrs	90 cd/m², 50% checkerboard	Note (1)
Life Time	14,000	-	Hrs	70 cd/m², 50% checkerboard	Note (2)

Note:

- (A) Under Vcc = 16.5V, Ta = 25 °C, 50% RH.
- (B) Life time is defined the amount of time when the luminance has decayed to less than 50% of the initial measured luminance.

(1) Setting of 90 cd/m²:

Master contrast setting: 0x0b
 Red contrast setting: 0x70
 Green contrast setting: 0x71
 Blue contrast setting: 0x94

Frame rate: 105HzDuty setting: 1/128

(2) Setting of 70 cd/m²:

Master contrast setting: 0x09
Red contrast setting: 0x66
Green contrast setting: 0x6a
Blue contrast setting: 0x89

Frame rate : 105HzDuty setting : 1/128

- 6 - REV.: A01 2012/11/15

6. ELECTRICAL CHARACTERISTICS

6.1 D.C ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETERS	TEST CONDITION	MIN	TYP	MAX	UNIT
V _{CC}	Analog power supply (for OLED panel)		16	16.5	17	V
V _{CI}	Digital power supply		2.4	-	3.5	٧
V_{DDIO}	I/O voltage power supply		1.65	-	V_{CI}	٧
I _{DD}	$V_{CI} = V_{DDIO} = 3.5V$, $V_{CC} = 1$ External $V_{DD} = 2.6V$, Displ No panel attached, contra	ay ON,		170	190	uA
I _{DDIO}	$V_{CI} = V_{DDIO} =$, 3.5V, $V_{CC} = 16V$, Display ON,	External VDD = 2.6V		0.5	10	uA
Olddi	No panel attached, contrast = FF	Internal VDD		0.5	10	uA
I _{Cl}	$V_{CI} = V_{DDIO} =$, 3.5V, $V_{CC} = 16V$, Display ON,	External VDD = 2.6V	-	60	70	uA
I ICI	No panel attached, contrast = FF	Internal VDD		255	280	uA
laa	$V_{CI} = V_{DDIO} =$, 3.5V, $V_{CC} = 16V$, Display ON,	External VDD = 2.6V	-	1.15	1.26	mA
I _{CC}	No panel attached, contrast = FF	Internal VDD		1.15	1.26	mA
V _{IH}	Hi logic input level		0.8* V _{DDIO}	-	V_{DDIO}	٧
V _{IL}	Low logic input level		0	-	0.2* V _{DDIO}	٧
V _{OH}	Hi logic output level		0.9* V _{DDIO}	-	V_{DDIO}	٧
V _{OL}	Low logic output level		0	-	0.1* V _{DDIO}	V
	Segment Output Current	Contrast=FF	-	200	-	uA
I _{SEG}	Setting V _{CC} = 16V at IREF =	Contrast=7F	-	100	-	uA
	12.5uA	Contrast=3F	-	50	-	uA

- 7 - REV.: A01 2012/11/15

6.2 ELECTRO-OPTICAL CHARACTERISTICS

PANEL ELECTRICAL SPECIFICATIONS

PARAMETER	MIN	TYP.	MAX	UNITS	COMMENTS
Normal mode current		30	32	mA	All pixels on (1)
Standby mode current		3	4	mA	Standby mode 10% pixels on (2)
Normal mode power consumption		495	528	mW	All pixels on (1)
Standby mode power consumption		49.5	66	mW	Standby mode 10% pixels on (2)
Normal mode Luminance	70	90		cd/m ²	Display Average
Standby mode Luminance		20		cd/m ²	
CIEx (White)	0.24	0.28	0.32		
CIEy (White)	0.28	0.32	0.36		
CIEx (Red)	0.62	0.66	0.70		
CIEy (Red)	0.29	0.33	0.37		v v (CIE 1021)
CIEx (Green)	0.26	0.30	0.34		x, y (CIE 1931)
CIEy (Green)	0.59	0.63	0.67		
CIEx (Blue)	0.10	0.14	0.18		
CIEy (Blue)	0.14	0.18	0.22		
Dark Room Contrast	2000:1				
Viewing Angle	160			degree	
Response Time		10		μs	

(1) Normal mode condition:

Driving Voltage: 16.5V

Master contrast setting: 0x0bRed contrast setting: 0x70

Green contrast setting : 0x71Blue contrast setting : 0x94

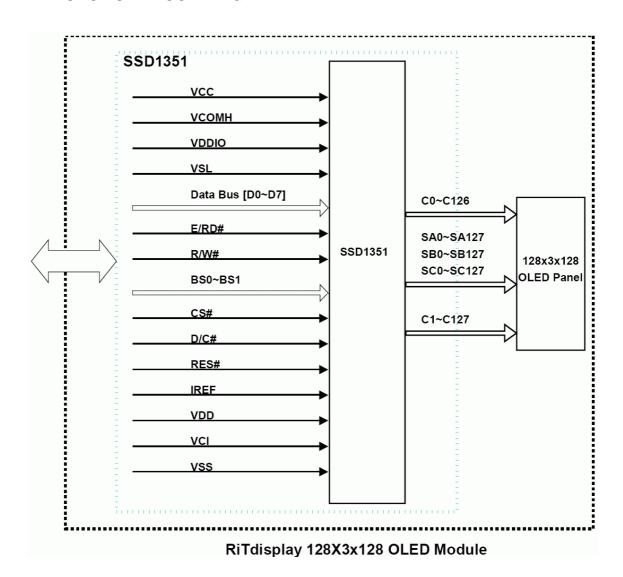
Frame rate: 105HzDuty setting: 1/128

(2) Standby mode condition:

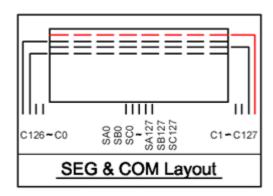
Driving Voltage: 16.5V

Master contrast setting: 0x04
 Red contrast setting: 0x4e
 Green contrast setting: 0x53
 Blue contrast setting: 0x6e

Frame rate: 105HzDuty setting: 1/128


- 8 - REV.: A01 2012/11/15

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.



7. INTERFACE

7.1 FUNCTION BLOCK DIAGRAM

7.2 PANEL LAYOUT DIAGRAM

- 9 - REV.: A01 2012/11/15

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

7.3 PIN ASSIGNMENTS

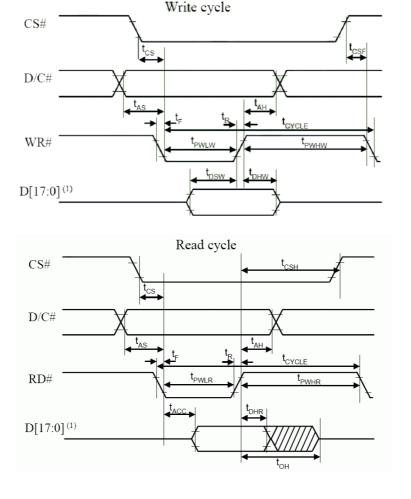
PIN NAME	PIN NO	DESCRIPTION					
NC(GND)	1	Ground.					
VCC	2	Power supply for panel driving voltage.					
VCOMH	3	COM signal deselected voltage level. A capacitor should be connected between this pin an VSS.					
VDDIO	4	Power supply for interface logic level.					
VSL	5	This is segment voltage reference pin.					
NC	6	No connection.					
D7	7						
D6	8						
D5	9						
D4	10	These pins are bi-directional data bus connecting to the					
D3	11	MCU data bus.					
D2	12						
D1	13						
D0	14						
E/RD#	15	8080: data read enable pin; 6800:Read/Write enable pin.					
R/W#	16	8080: data write enable pin; 6800:Read/Write select pin.					
BS0	17	Interface coloct nin					
BS1	18	Interface select pin.					
CS#	19	Chip select pin.					
D/C#	20	H: Data, L: Command.					
RES#	21	Hardware Reset pin (Low active).					
IREF	22	A resistor should be connected between this pin and VSS.					
NC	23	No connection.					
NC	24	No connection.					
NC	25	No connection.					
VDD	26	Power supply pin for core logic operation.					
VCI	27	Digital voltage power supply.					
VSS	28	Ground.					
NC	29	No connection.					
NC(GND)	30	Ground.					

- 10 - REV.: A01 2012/11/15

7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP

The GDDRAM is a bit mapped static RAM holding the pattern to be displayed. The RAM size is 128 x 128 x 18bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. Each pixel has 18-bit data. Each sub-pixels for color A, B and C have 6 bits. The arrangement of data pixel in graphic display data RAM is shown below.

262k Color Depth Graphic Display Data RAM Structure														
Segment	Normal		0			1		2	 	126		127		
Address	Remapped		. 127			126		125	 	1		0		
C	olor	A	В	С	A	В	С	Α		C	A	В	C	
	Data	A5	B5	C5	A5	B5	C5	A5	 	C5	A5	B5	C5	
_ I	Format	A4	B4	C4	A4	B4	C4	A4	 	C4	A4	B4	C4	
		A3	B3	C3	A3	В3	C3	A3	 	C3	A3	В3	C3	
Common		A2	B2	C2	A2	B2	C2	A2	 	C2	A2	B2	C2	
Address		A1	B1	C1	A1	B1	C1	A1	 	C1	A1	B1	C1	
		A0	B0	C0	A0	В0	C0	A0	 	C0	A0	В0	C0	Common
Normal	Remapped													output
0	127	6	6	6	6	6	6	6	 	6	6	6	6	COM0
1	126	6	6	6	6	6	6	6	 	6	6	6	6	COM1
2	125	6	6	6	6	6	6	6	 	6	6	6	6	COM2
3	124	6	Ø	6	6	6	6	6	 	6	6	6	6	COM3
4	123	6	6	6	6	6	6	6	 	6	6	6	6	COM4
5	122	6	6	6	6	6	6	6	 	6	6	6	6	COM5
6	121	6	6	no of bi	ts in this	cell	6	6	 	6	6	6	6	COM6
7	120								 	6	6	6	6	COM7
:	:	:	:	:	:	:	:	:	 	:	:	:	:	:
:	:	:	:	:	:	:	:	:	 	:	:	:	:	:
:	:	:	:	:	:	:	:	:	 	:	:	:	:	:
123	4	6	6	6	6	6	6	6	 	6	6	6	6	:
124	3	6	6	6	6	6	6	6	 	6	6	6	6	COM124
125	2	6	6	6	6	6	6	6	 	6	6	6	6	COM125
126	1	6	6	6	6	6	6	6	 	6	6	6	6	COM126
127	0	6	6	6	6	6	6	6	 	6	6	6	6	COM127
SEC	output	SA0	SB0	SC0	SA1	SB1	SC1	SA2		SC126	SA127	SB127	SC127	
SEG	output	5A0	200	SC0	SAI	SDI	SCI	SA2	 	SC120	5A12/	3D12/	SC12/	


- 11 - REV.: A01 2012/11/15

7.5 INTERFACE TIMING CHART

8080-Series MCU Parallel Interface Timing Characteristics V_{DD} - V_{SS} = 2.4 to 2.6V, V_{DDIO} =1.65V, V_{CI} = 2.8V, T_A = 25°C)									
Symbol	abol Parameter Min Typ Max								
t _{CYCLE}	Clock Cycle Time	300	-	-	ns				
t _{AS}	Address Setup Time	10	-	-	ns				
t _{AH}	Address Hold Time	0	-	-	ns				
t _{DSW}	Write Data Setup Time	40	-	-	ns				
t _{DHW}	Write Data Hold Time	7	-	-	ns				
t _{DHR}	Read Data Hold Time	20	-	-	ns				
t _{OH}	Output Disable Time	-	-	70	ns				
t _{ACC}	Access Time	-	-	140	ns				
t _{PWLR}	Read Low Time	150	-	-	ns				
t _{PWLW}	Write Low Time	60	-	-	ns				
t _{PWHR}	Read High Time	60	-	-	ns				
t_{PWHW}	Write High Time	60	-	-	ns				
t _R	Rise Time	-	-	15	ns				
t _F	Fall Time	-	-	15	ns				
t _{CS}	Chip select setup time	0	-	-	ns				
t _{CSH}	Chip select hold time to read signal	0	-	-	ns				
t _{CSF}	Chip select hold time	20	-	-	ns				

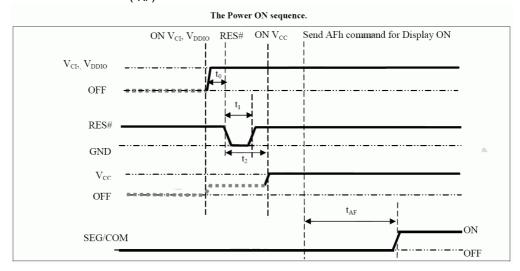
8080-series MCU parallel interface characteristics

Note

(1) when 8 bit used: D[7:0] instead; when 16 bit used: [15:0] instead; when 18 bit used: D[17:0] instead.

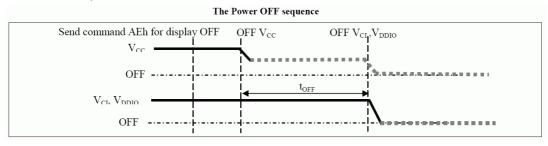
- 12 - REV.: A01 2012/11/15

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.


8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT

8.1 POWER ON / OFF SEQUENCE

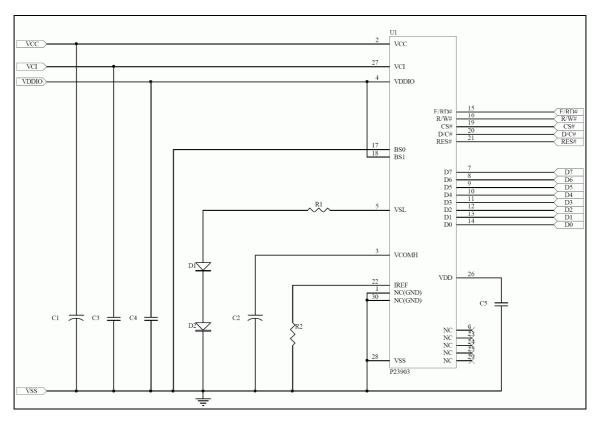
The following figures illustrate the recommended power ON and power OFF sequence of SSD1351 (assume V_{CI} and V_{DDIO} are at the same voltage level and internal V_{DD} is used).


Power ON sequence:

- 1. Power ON V_{CI}, V_{DDIO}.
- 2. After V_{CI} , V_{DDIO} become stable, set wait time at least 1ms (t_0) for internal V_{DD} become stable. Then set RES# pin LOW (logic low) for at least 2us (t₁) (4) and then HIGH (logic high).
- 3. After set RÈS# pin ĽÓW (logic low), wait for at least 2us (t_2). Then Power ON $V_{\text{CC}}.^{(1)}$
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 200ms(t_{AF}).

Power OFF sequence:

- 1. Send command AEh for display OFF. 2. Power OFF V_{CC} .
- 3. Wait for t_{OFF}. Power OFF V_{CI}, V_{DDIO}. (where Minimum t_{OFF}=80ms ⁽³⁾, Typical $t_{OFF}=100$ ms)


- (1) Since an ESD protection circuit is connected between VcI, VDDIO and Vcc, Vcc becomes lower than Vci whenever Vci, Vddio is ON and Vcc is OFF as shown in the dotted line of Vcc in above figures.
- (2) Vcc should be kept float (disable) when it is OFF.
- (3) VcI, VDDIO should not be Power OFF before Vcc Power OFF.
- (4) The register values are reset after t1.
- (5) Power pins (VDD, VCC) can never be pulled to ground under any circumstance.

REV.: A01 - 13 -2012/11/15

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

8.2 APPLICATION CIRCUIT

Recommend components:

C3, C4, C5: 1uF/16V(0805)

C1, C2: 4.7uF/35V (Tantalum type) or VISHAY (572D475X0025A2T)

R2: 1M ohm 1%(0603)

R1: 50 ohm 1/4W

D1, D2: RB480K(ROHM)

This circuit is for 8080 8bits interface

8.3 COMMAND TABLE

Refer to SSD1351 IC Spec.

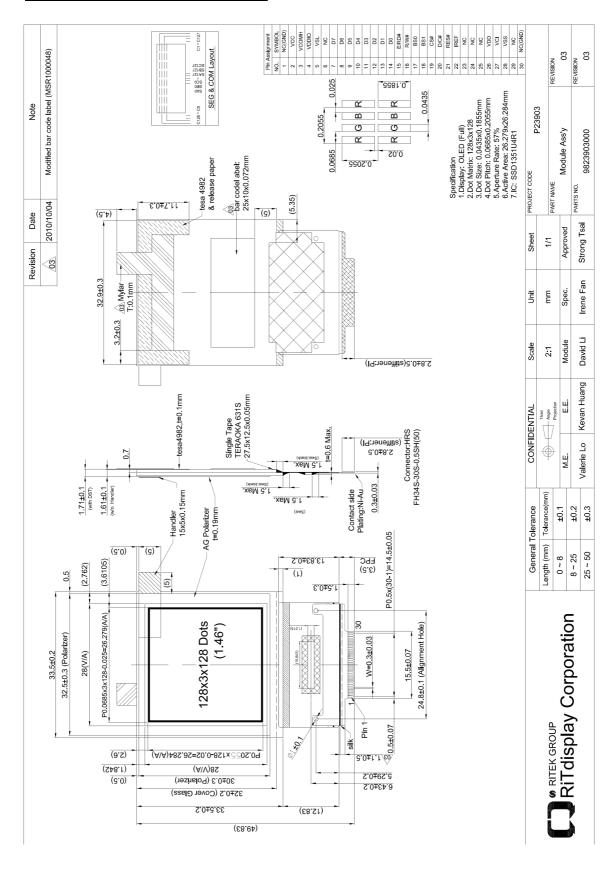
- 14 - REV.: A01 2012/11/15

9. RELIABILITY TEST CONDITIONS

No.	Items	Specification	Quantity
1	High temp. (Non-operation)	85℃, 240hrs	5
2	High temp. (Operation)	70 ℃, 120hrs	5
3	Low temp. (Operation)	-40℃, 120hrs	5
4	High temp. / High humidity (Operation)	65℃, 90%RH, 96hrs	5
5	Thermal shock (Non-operation)	-40°C ~85°C (-40°C /30min; transit /3min; 85°C /30min; transit /3min) 1cycle: 66min, 20 cycles	5
6	Vibration	Frequency: 5~50HZ, 0.5G Scan rate: 1 oct/min Time: 2 hrs/axis Test axis: X, Y, Z	1 Carton
7	Drop	Height: 120cm Sequence : 1 angle \ 3 edges and 6 faces Cycles: 1	1 Carton
8	ESD (Non-operation)	Air discharge model, ±8kV, 10 times	5

Test and measurement conditions

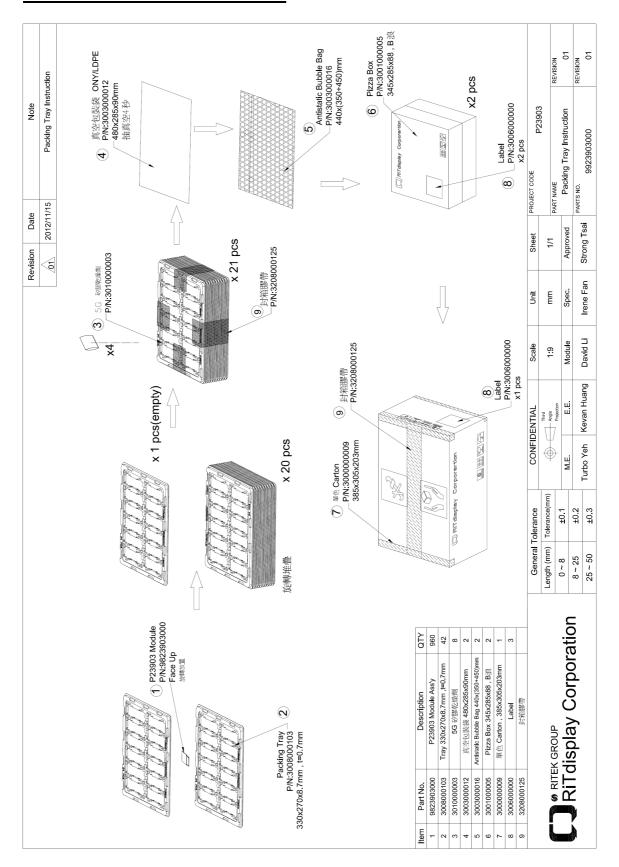
- 1. All measurements shall not be started until the specimens attain to temperature stability.
- 2. All-pixels-on is used as operation test pattern.
- 3. The degradation of Polarizer are ignored for item 1, 4 & 5.


Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: > 50% of initial value.
- 4. Current consumption: within \pm 50% of initial value.

- 15 - REV.: A01 2012/11/15

10. EXTERNAL DIMENSION



- 16 - REV.: A01 2012/11/15

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

11. PACKING SPECIFICATION

- 17 - REV.: A01 2012/11/15

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

12. APPENDIXES

APPENDIX 1: DEFINITIONS

A. DEFINITION OF CHROMATICITY COORDINATE

The chromaticity coordinate is defined as the coordinate value on the CIE 1931 color chart for R, G, B, W.

B. DEFINITION OF CONTRAST RATIO

The contrast ratio is defined as the following formula:

C. DEFINITION OF RESPONSE TIME

The definition of turn-on response time Tr is the time interval between a pixel reaching 10% of steady state luminance and 90% of steady state luminance. The definition of turn-off response time Tf is the time interval between a pixel reaching 90% of steady state luminance and 10% of steady state luminance. It is shown in Figure 2.

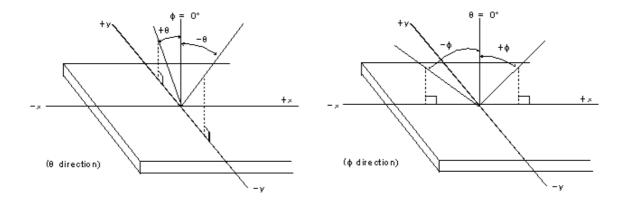
Figure 2: Response time

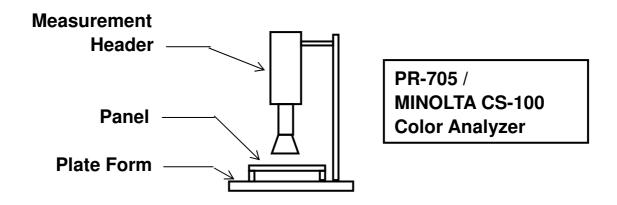
- 18 - REV.: A01 2012/11/15

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

D. DEFINITION OF VIEWING ANGLE

The viewing angle is defined as Figure 3. Horizontal and vertical (H & V) angles are determined for viewing directions where luminance varies by 50% of the perpendicular value.




Figure 3: Viewing Angle

APPENDIX 2: MEASUREMENT APPARATUS

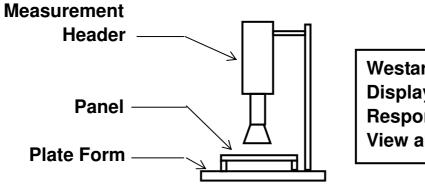
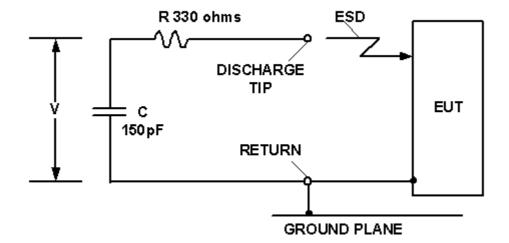

A. LUMINANCE/COLOR COORDINATE

PHOTO RESEARCH PR-705, MINOLTA CS-100

B. CONTRAST / RESPONSE TIME / VIEW ANGLE

WESTAR CORPORATION FPM-510


Westar FPM-510
Display Contrast /
Response time /
View angle Analyzer

- 20 - REV.: A01 2012/11/15

This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

C. ESD ON AIR DISCHARGE MODE

- 21 - REV.: A01 2012/11/15

APPENDIX 3: PRECAUTIONS

A. RESIDUE IMAGE

Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.