AMOLED SPECIFICATION | Part Number | USMP-A015-027034CDO-B1 | |-----------------|------------------------| | Size | 1.45" | | Resolution | 272 x 340 | | Brightness | 350 cd/m² | | Contrast | 10000:1 | | Viewing Angle | 80/80/80/80 (min) | | Operating Temp. | -20 ~ 60°C | | | | | | | | | | FOR ADDITIONAL INFORMATION PLEASE CONTACT: engineering@usmicroproducts.com | Approved by (customer use) | Checked by | Prepared by | |----------------------------|----------------------------|--| Approved by (customer use) | Approved by (customer use) Checked by | PROPRIETARY NOTE: THIS SPECIFICATION IS THE PROPERTY OF US MICRO PRODUCTS AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF US MICRO PRODUCTS AND MUST BE RETURNED TO US MICRO PRODUCTS UPON ITS REQUEST. (800) 741-7755 www.usmicroproducts.com # **Table of Contents** | Cov | versheet | 1 | |-----|--|-------------| | Tab | ole of Contents | 2 | | Red | cord of Revision | 3 | | 1 | General Specifications | 4 | | 2 | Input/output Terminals | ,
5 | | 3 | 2.1 Main FPC Pin Assignment-AMOLED Panel Input / Output Signal Interface 2.2 TP FPC Pin Assignment-On-cell TP Input / Output Signal Interface 2.3 System BD and Display Module Interface Conflagration Absolute Maximum Ratings | 5
6
7 | | 4 | 3.1 Driving AMOLED Panel Electrical Characteristics | 8 | | 5 | 4.1 Driving AMOLED Panel 4.2 Current Consumption AC Characteristics | 8 | | 6 | 5.1 MIPI Interface Characteristics | 11
12 | | 7 | 6.1 Display Power on / off Sequence | 13 | | 8 | Environmental / Reliability Test | 20 | | 9 | Quality Level | 21 | | | 9.1 AMOLED Module of Characteristic Inspection | 21
22 | | 40 | 10.3.2 Visual inspection | 22 | | | • | | | 11 | Precautions for Use of AMOLED Modules | | | | 11.1 Handling Precautions: 11.2 Storage Precautions: 11.3 Transportation Precautions: | | # **Record of Revision** | Rev | Issue Date | Description | Editor | |-----|------------|---------------------------|------------| | A0 | 2017-01-22 | Draft | Xu Lixiong | | A1 | 2017-03-08 | Update Mechanical Drawing | Xu Lixiong | | A2 | 2017-04-12 | Update R/G/B chromaticity | Xu Lixiong | | A3 | 2017-05-02 | Update TP IC type | Xu Lixiong | | A4 | 2018-02-23 | Updated Driver IC | Xu Lixiong | # 1 General Specifications | | Feature | Spec | Remark | |-----------------------------------|--|----------------------------|---------------------------| | | Screen Size (inch) | 1.45 | | | | Display Mode | AMOLED | | | | Resolution(dot) | 272 (W) x RGB x 340(H) | | | | Active Area(mm) | 23.01 (W)×28.77 (H) | | | Diaplay Spee | Pixel Pitch (um) | 84.60 (W) x 84.60 (H) | | | Display Spec | Pixel Configuration | V-Style3 | | | | Technology Type | LTPS | | | | Color Depth | 16.7M | | | | Interface | MIPI 1LANE | | | | Surface Treatment | Hard Coating | | | | With TP/Without TP | With TP(on Cell) | | | Mechanical
Characteristi
cs | Module Outline Dimension(W x H x D) (mm) | 26.01(W)x33.77(H)x0.79 (D) | Without
metal
frame | | | Weight (g) | TBD | | | Electronic | Driver IC(Type) | RM67162 | | | LICCH OHIC | TP IC(Type) | FT3267 | | Note 1: Requirements on Environmental Protection: RoHS. # 2 Input/output Terminals #### 2.1 Main FPC Pin Assignment-AMOLED Panel Input / Output Signal Interface FPC connector: BM20B(0.8)-24DP-0.4V(51) Main board recommended connector: BM20B(0.8)-24DS-0.4V(51) | No | Symbol | I/O | Description | |----|----------|-------|--| | 1 | GND | GND | Ground | | 2 | XRES | I | Device reset signal(0:Enable;1:Disable) | | 3 | DSI_D0N | I/O | MIPI negative data signal | | 4 | SWIRE | 0 | SWIRE signal for PWR IC control | | 5 | DSI_D0P | I/O | MIPI positive data signal | | 6 | ОТР | power | 7.5 V, OTP function Pin. Leave this pin OPEN if it is not used. | | 7 | GND | GND | Ground | | 8 | TE | 0 | Vsync(vertical sync)signal output from panel to avoid tearing effect | | 9 | DSI_CLKN | I | MIPI negative clock signal | | 10 | GND | GND | Ground | | 11 | DSI_CLKP | I | MIPI positive clock signal | | 12 | GND | GND | Ground | | 13 | GND | GND | Ground | | 14 | GND | GND | Ground | | 15 | VDDIO | Power | Power supply for Interface system except MIPI interface | | 16 | VCI | Power | Driver analog power supply | | 17 | GND | GND | Ground | | 18 | GND | GND | Ground | | 19 | ELVSS | Power | AMOLED negative power supply | | 20 | ELVDD | Power | AMOLED positive power supply | | 21 | ELVSS | Power | AMOLED negative power supply | | 22 | ELVDD | Power | AMOLED positive power supply | | 23 | ELVSS | Power | AMOLED negative power supply | | 24 | ELVDD | Power | AMOLED positive power supply | Note: I=Input; O=Output; P=Power; I/O=Input / Output # 2.2 TP FPC Pin Assignment-On-cell TP Input / Output Signal Interface | No | Symbol | I/O | Description | | | |-------------------------------------|--------|-------|--------------------------------|--|--| | 1 | GND | GND | Ground | | | | 2 | INT | I/O | External interrupt to the host | | | | 3 | RSTN | I | External Reset, Low is active | | | | 4 | SCL | I/O | I2C clock input | | | | 5 | SDA | I/O | I2C data input and output | | | | 6 | GND | GND | Ground | | | | 7 | NC | - | Not Connected | | | | 8 | AVDD | Power | TP power supply input. | | | | 8 AVDD Power IP power supply imput. | | | | | | TP main board recommended connector: 04 6298 008 100 883+ #### 2.3 System BD and Display Module Interface Conflagration ### 3 Absolute Maximum Ratings # 3.1 Driving AMOLED PanelMaximum Ratings (Voltage Referenced to VSS) Vss=0V, Ta=25°C | Item | Symbol | MIN | MAX | Unit | Remark | |-----------------------|--------|------|------|------|--------| | Input Voltage | VCI | -0.3 | +5.5 | V | | | Digital Power supply | VDDIO | -0.3 | +5.5 | V | | | Positive Power Input | ELVDD | ı | +5.0 | V | | | Negative Power Input | ELVSS | -5.0 | ı | ٧ | | | TP power supply Input | AVDD | -0.3 | +3.6 | V | | Note: Functional operation should satisfy the limits in the Electrical Characteristics tables or Pin Description section. If the module exceeds the absolute maximum ratings, permanent damage may occur. Besides, if the module is operated with the absolute maximum ratings for a long time, the reliability may also drop. #### 4 Electrical Characteristics #### 4.1 Driving AMOLED Panel Ta=25°C | Item | | Symbol | MIN | TYP | MAX | Unit | Remark | |------------------------------|------------|--------|------------|------|------------|------|-------------| | Input Digital Supply Voltage | | VDDIO | 1.65 | 1.80 | 3.30 | V | Note1、Note2 | | Analog Supply Voltage | | VCI | 2.70 | 2.80 | 3.60 | V | | | ELVDD Supply | Voltage | ELVDD | 4.55 | 4.60 | 4.65 | V | | | ELVSS Supply | Voltage | ELVSS | -2.46 | -2.4 | -2.34 | V | | | TP power supp | ly Input | AVDD | 2.8 | 2.8 | 3.6 | V | | | Input Signal | High Level | VIH | 0.80*VDDIO | - | VDDIO | V | | | Voltage | Low Level | VIL | 0.00 | - | 0.20*VDDIO | V | | | Output Signal | High Level | VOH | 0.80*VDDIO | - | VDDIO | V | | | Voltage | Low Level | VOL | 0.00 | 1 | 0.20*VDDIO | V | | Note1: The input digital voltage is the I/O reference voltage. Note2: VDDIO usually ranges from 1.65V to 1.95 V. If VDDIO is changed, the remaining voltage needs to be changed to the same voltage as VDDIO. #### 4.2 Current Consumption | Item | | Symbol | Condition | Min. | Тур. | Max. | Unit | Remark | |-------------|----------|--------------------|-------------|------|------|------|------|--------| | Panel Power | | P _{NL} | ELVDD=4.6V | - | 129 | 143 | mW | Note1 | | | | I _{NL} | ELVSS=-2.4V | - | 15 | 17 | mA | Note1 | | | Normal | I _{VCI} | VCI=2.8V | - | TBD | - | mA | - | | IC | | I _{IOVCC} | VDDIO=1.8V | - | TBD | - | mA | - | | | Ctond by | I _{VCI} | VCI=2.8V | - | TBD | - | uA | - | | | Stand-by | I _{IOVCC} | VDDIO=1.8V | - | TBD | - | uA | - | Note1: Based on L255 (350nits) full white pattern. Note2: Based on white pattern. MIPI-DSI frame 60Hz. #### 5 AC Characteristics # 5.1 MIPI Interface Characteristics HS Data Transmission Burst #### HS clock transmission #### Turnaround Procedure ### Bus turnaround (BAT) from MPU to display module timing Timing Parameters: | Parameter | Description | Min | Тур | Max | Unit | |---|---|---|-----|--------------|------| | T _{CLK-POST} | Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of T | 60ns + 52*UI | | | ns | | T _{CLK-TRAIL} | Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst. | 60 | | | ns | | T _{HS-EXIT} | Time that the transmitter drives LP-11 following a HS burst. | 300 | | | ns | | T _{CLK-TERM-EN} | Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} . | Time for Dn to reach V _{TERM-EN} | | 38 | ns | | T _{CLK-PREPARE} | Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission. | 38 | | 95 | ns | | T _{CLK-PRE} | Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode. | 8 | | | UI | | T _{CLK-PREPARE}
+ T _{CLK-ZERO} | T _{CLK-PREPARE} + time that the transmitter drives the HS-0 state prior to starting the Clock. | 300 | | | ns | | T _{D-TERM-EN} | Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} . | Time for Dn to reach V _{TERM-EN} | | 35 ns +4*UI | | | T _{HS-PREPARE} | Time that the transmitter drives the Data
Lane LP-00 Line state immediately before
the HS-0 Line state starting the HS
transmission | 40ns + 4*UI | | 85 ns + 6*UI | ns | | T _{HS-PREPARE}
+ T _{HS-ZERO} | T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence. | 145ns + 10*UI | | | ns | | T _{HS-TRAIL} | Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst | 60ns + 4*UI | | | ns | | Parameter | Description | Min | Тур | Max | Unit | Notes | |-------------------------|---|---------------------|-----------------------|-----------------------|------|-------| | T _{LPX(M)} | Transmitted length of any Low-Power state period of MCU to display module | 50 | | 150 | ns | 1,2 | | T _{TA-SURE(M)} | Time that the display module waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround. | T _{LPX(M)} | | 2*T _{LPX(M)} | ns | 2 | | $T_{LPX(D)}$ | Transmitted length of any Low-Power state period of display module to MCU | 50 | | 150 | ns | 1,2 | | T _{TA-GET(D)} | Time that the display module drives the
Bridge state (LP-00) after accepting
control during a Link Turnaround. | | 5*T _{LPX(D)} | | ns | 2 | | T _{TA-GO(D)} | Time that the display module drives the Bridge state (LP-00) before releasing control during a Link Turnaround. | | 4*T _{LPX(D)} | | ns | 2 | | T _{TA-SURE(D)} | Time that the MPU waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround. | T _{LPX(D)} | | 2*T _{LPX(D)} | ns | 2 | # 5.2 Display RESET Timing Characteristics Reset input timing: VDDIO=1.65 to 3.3V, VDD=2.7 to 3.6V, AGND=DGND=0V, Ta=-40 to 85° C #### **Timing Parameters:** | Symbol | Parameter | Related Pins | MIN | TYP | MAX | Note | Unit | |-------------------|---|--------------|-----|-----|-----|--|------| | t _{RESW} | *1) Reset low pulse width | RESX | 10 | - | - | - | μs | | | t _{REST} *2) Reset complete time | - | - | - | 5 | When reset applied during Sleep in mode | ms | | ^L REST | | - | | - | 120 | When reset applied during Sleep out mode | ms | Note 1. Spike caused by an electrostatic discharge on RESX line does not cause irregular system reset according to the table below. | RESX Pulse | Action | |----------------------|---| | Shorter than 5µs | Reset Rejected | | Longer than 10μs | Reset | | Between 5μs and 10μs | Reset starts (It depends on voltage and temperature condition.) | Note 2. During the resetting period, the display will be blank (The display is entering blanking sequence, whose maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains blank in Sleep In –mode) and then return to Default condition for H/W reset. Note 3. During Reset Complete Time, data in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge #### of RESX. Note 4. Spike Rejection also applies during a valid reset pulse as shown below: Note 5. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec. #### 5.3 TE Timing Characteristics Mode1, The Tearing Effect Output line consists of V-Blanking information only. Tvdh = The LCD display is not updated from the frame memory. Tvdl = The LCD display is updated from the frame memory. 12 ### 6 Recommended Operating Sequence #### 6.1 Display Power on / off Sequence #### 6.1.1 Power On Sequence #### 6.1.2 Power Off Sequence #### 6.2 Brightness control | In at/Dara | D/\/ | Address | | Data Tura | Description | | |------------|-------------------------|---------|-----------|-------------|----------------------|--| | insveara | nst/Para R/W MIPI Other | | Date Type | Description | | | | BRTCTRL | W | 51h | 5100h | Hex | Value form 0~255(FF) | | Note: 00h value means the lowest brightness and FFh value means the highest brightness # 7 Optical Characteristics Optical Specification | Item | | Symbol | Condition | Min | Тур | Max | Unit | Remark | |---------------|--------|------------------|-------------|-------|-------|-------|-------------------|--| | | | θТ | | 80 | | | | | | | | θВ | CR≥10 | 80 | | | Dograd | Note 2 | | View Angle | | θL | CR210 | 80 | | | Degree | Test Equipment:
CS2000A | | | | θR | | 80 | | | | 002008 | | Contrast Rat | tio | CR | θ=0° | 10000 | | | | Note1
Note3
Test Equipment:
CS2000A | | | | T _{ON} | | | | | | Note1
Note4 | | Response Ti | me | T _{OFF} | 25 ℃ | | | 4 | ms | Test Equipment:
Admesy MSE | | | White | х | | 0.292 | 0.312 | 0.332 | | | | | vviile | У | | 0.309 | 0.329 | 0.349 | | | | | Red | х | | 0.625 | 0.655 | 0.685 | | Test Equipment: | | Chromaticity | | у | | 0.315 | 0.345 | 0.375 | | CS2000A | | Ciliomaticity | Green | х | | 0.210 | 0.250 | 0.290 | | Note: Chromaticity can be modified according | | | Green | у | | 0.670 | 0.710 | 0.750 | | to customer demand | | | Blue | х | | 0.105 | 0.135 | 0.165 | | | | | Diue | у | | 0.030 | 0.060 | 0.090 | | | | Uniformity | | U | 5 | 75 | | | % | Note1
Note6
luminance of center
point is 350±35nits
Test Equipment:
CS2000A | | NTSC | | | | 85 | 100 | | % | Note5 | | Luminance | | L | | 315 | 350 | 385 | Cd/m ² | Note1
Note7
Test Equipment:
CS2000A | | Cross-talk | | | | 3 | % | Note8
L≤350nits
Test Equipment:
CS2000A | |------------|--|-----|-----|-----|---|--| | Gamma | | 1.9 | 2.2 | 2.5 | | Gamma=2.2±0.3 (L≤ 350nits); Gamma Self-adjustment (L> 350nits) Test Equipment: CS2000A | #### **Test Conditions:** - 1. the ambient temperature is 25° C. - 2. The test systems refer to Note1 and Note2. #### Note 1: Definition of optical measurement system. The optical characteristics should be measured in dark room. The optical properties are measured at the center point of the AMOLED screen. All input terminals AMOLED panel must be ground when measuring the center area of the panel. Note 2: Definition of viewing angle range and measurement system. Fig. 1 Definition of viewing angle #### Note 3: Definition of contrast ratio $Contrast\ ratio(CR) = \frac{Lumin\ ance\ measured\ when\ LCD\ is\ on\ the\ "white"\ state}{Lumin\ ance\ measured\ when\ LCD\ is\ on\ the\ "Black"\ state}$ "White state ": A state where the AMOLED should be driven by Vwhite. "Black state": A state where the AMOLED should be driven by Vblack. #### Note 4: Definition of response time The response time is defined as the AMOLED optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%. Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of AMOLED. #### Note 6: Definition of luminance uniformity Active area is divided into 5 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area. Luminance Uniformity(U) = Lmin/Lmax L-----Active area length W----- Active area width Fig. 2 Definition of uniformity Lmax: The measured maximum luminance of all measurement position. Lmin: The measured minimum luminance of all measurement position. #### Note 7: Definition of luminance: Measure the luminance of white state at center point. #### Note 8: Cross Talk - A. Measure luminance at the position, P0. - B. Calculate cross talk as below equation. $$\begin{split} L_{W_OFF} &= \frac{L_{W1} + L_{W2} + L_{W3} + L_{W4}}{4} \\ L_{B_OFF} &= \frac{L_{B1} + L_{B2} + L_{B3} + L_{B4}}{4} \\ crosstalk &= \frac{\left|L_{Wi_ON} - L_{W_OFF}\right|}{L_{W_OFF}} \times 100\% \qquad (i = 5 \text{ to } 8) \\ crosstalk &= \frac{\left|L_{Bi_ON} - L_{B_OFF}\right|}{L_{B_OFF}} \times 100\% \qquad (i = 5 \text{ to } 8) \end{split}$$ (a) Lw_OFF, LB_OFF measuring pattern (b) L_{W_ON}, L_{B_ON} measuring pattern # 8 Environmental / Reliability Test | No | Test Item | Condition | Remark | |----|--|---|---| | 1 | High Temperature
Operation | +60℃, 240hrs | IEC60068-2-2,GB2423.2 | | 2 | Low Temperature
Operation | -20°C, 240hrs | IEC60068-2-1
GB2423.1 | | 3 | High Temperature
Storage | +70℃, 240hrs | IEC60068-2-2
GB2423.2 | | 4 | Low Temperature
Storage | -30℃, 240hrs | IEC60068-2-1
GB2423.1 | | 5 | High Temperature & High Humidity Operation | 60℃, 90% RH,240hrs | IEC60068-2-78
GB/T2423.3 | | 6 | Thermal Shock
(Non-operation) | -30°C (30 min)~+70°C (30 min),
Change time:5min, 100 Cycles | Start with cold temperature,
End with high temperature,
IEC60068-2-14,GB2423.22 | | 7 | Electro Static
Discharge
(Operation) | C=150pF, R=330Ω · 5points/panel Air:±8KV, 5times; Contact:±4KV, 5 times; (Environment: 15°C~35°C, 30%RH~60%RH, 86Kpa~106Kpa). | IEC61000-4-2
GB/T17626.2 | | 8 | Package Drop Test | 1 corner, 3 edges, 6 surfaces
Drop height:760mm | IEC60068-2-32
GB/T2423.8 | | 9 | Package Vibration
Test | Random Vibration:
1.15Grms, 1~200Hz, Random,
30mins/ (X, Y, Z) axis | IEC60068-2-34
GB/T2423.11 | ### 9 Quality Level #### 9.1 AMOLED Module of Characteristic Inspection The environmental condition and visual inspection shall be conducted as below: (1) Ambient temperature: 22± 3°C (2) Humidity: 65 ± 20%RH (3) Ambient light intensity: 800 ~ 1200 lux (4) Viewing Distance: 35 ± 5cm (5) Viewing angle (tolerance): the front side 90° (Z) ±30° (6) Inspection time: 10 ±2 sec #### 9.2 Sampling Procedures for each item acceptance table | Defect type | Sampling Procedures | AQL | |--------------|--|------| | Major defect | GB/T2828.1-2003 Inspection level II normal inspection single sample inspection | 0.65 | | Minor defect | GB/T2828.1-2003 Inspection level II normal inspection single sample inspection | 1.50 | #### Major defect Any defect may result in functional failure, or reduce the usability of product for its purpose, such as electrical failure, deformation and etc. #### Minor defect A defect does not reduce the usability of product for its intended purpose and un-uniformity, such as dot defect and etc. The criteria on major and/or minor judgment will be according with the classification of defects. AQL means that the quality level of product is acceptable for shipment, and the AQL shall satisfy with customer's quality request. # 9.3 Inspection Item10.3.1 Function tests | No. | Item | Cri | Criterion of Defect | | | | |-----|------------------|--------------|---------------------|-------------------|-------|--| | | | Defe | ot | Acceptable number | | | | | | Bright | Dot | 0 | | | | 1 | Dot Defect | | Red | 2 | Minor | | | | | Dark Dot | Green | 2 | | | | | | | Blue | 2 | | | | | | Dark Dot Dis | | | | | | 2 | No Display | | Not allowed | d | Major | | | 3 | Abnormal Display | Not allowed | | | Major | | | 4 | Normally white | Not allowed | | | Major | | | 5 | Flicker | Not allowed | | | Major | | | 6 | Missed Line | | Not allowed | | | | 10.3.2 Visual inspection | 10.3.2 | Visual inspection | | | | | | |--------|--|--|-----------|----------------------|---------------------------------|-------| | | Polarizer
Dent/Bubble
W | Size Φ (mr
Φ≦0.15
0.15<Φ≦0.
0.30<Φ | | nu | eptable
mber
nore
1 | Major | | 1 | Polarizer Dark/Bright Spots (Foreign Material) W Φ=(L+W)/2 | Size Φ (mm)
Φ≤0.10
0.10<Φ≤0.20
0.20<Φ | | Accepta
Iç | Minor | | | 2 | Polarizer Scratch/
Fiber(Linear) | Width(mm) W≤0.02 0.02 <w≤0.03 0.03<w<="" td=""><td>lgn
L≦</td><td>h(mm)
ore
1.00</td><td>Acceptable number Ignore 1 0 0</td><td>Minor</td></w≤0.03> | lgn
L≦ | h(mm)
ore
1.00 | Acceptable number Ignore 1 0 0 | Minor | | 3 | Discoloration | If its limit sample mutually with a co | | can | be fixed | | Minor | |---|---------------------------------|---|--------------------------------|-----|--|--|-------| | | Encap glass chipping \ chipping | The following sta panel. (unit: mm) Z <t< td=""><td colspan="2">ndards apply to a
X
≤1.0</td><td colspan="2">o any side of the Y </td></t<> | ndards apply to a
X
≤1.0 | | o any side of the Y | | | | | | dissymmetry. | | |----|-------------------|---|-------| | | | (5) Make sure FPC is not scalded, with its location holes not having deficiency or obviously shift. | Major | | | | (6)The component of FPC should be the same as BOM list. | Major | | | | (7)No remaining soldering Sn. | Major | | | | (8)No visual particle on the pad line. | Minor | | 10 | FPCA End Overhang | The size above 1/2 of soldering electrode of the parts overhang to the LAND is prohibited. (but contacting near other components is prohibited) | Major | | 11 | FPC Tilt Defect | Not allowed | Major | | 12 | Package | (1) Products should put into the anti-static trays, with non-overlapping, and the trays should be staggered placed. (2) Different products cannot be mixed into the same inner package. (3) The package should not have obvious deformation or breakage .The printing labels type and quantity are correct. (4) The package should have QC signature. ROHS label is needed if the product is under ROHS control. | Minor | # 10 Mechanical Drawing #### **Packing Drawing** | Packing Condition | Contents | |-----------------------------|--| | Packing Type | TRAY + Carton packing type | | TRAY material model | tray (10⁵~10 ⁹ Ω) | | Tray packing type | See the picture 1 | | Number of panels per tray | 42 pieces | | Number of Tray per carton | 19units ((18 units + 1 empty)PET tray) | | Number of panels per carton | 756 pieces | #### 11 Precautions for Use of AMOLED Modules #### 11.1 Handling Precautions: - 11.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from height. - 11.1.2 Do not press down the screen or the adjoining areas too hard because the color tone may be shifted. - 11.1.3 The polarizer covering the display surface of the AMOLED module is soft and easily scratched. Handle this polarizer carefully. - 11.1.4 If the display surface is contaminated, blow on the surface and gently wipe it with a soft dry cloth. If it is still not completely clear, moisten the cloth with ethyl alcohol. - 11.1.5 Solvents may damage the polarizer. Do not use water ketone or aromatic solvents except ethyl alcohol. Do not attempt to disassemble the AMOLED Module. - 11.1.6 If the logic circuit power is off, do not apply the input signals. - 11.1.7 To prevent destruction from static electricity, be careful to maintain an optimum working environment. - 11.1.8 Be sure to make yourself in contact with the ground when handling with the AMOLED Modules. - 11.1.9 Tools required for assembly, such as soldering irons, must be properly ground. - 11.1.10 To reduce the generation of static electricity, do not conduct assembly or other work under dry conditions. - 11.1.11 To protect the display surface, the AMOLED Module is coated with a film. Be careful when peeling off this protective film, because static electricity may generate. #### 11.2 Storage Precautions: - 11.2.1 When storing the AMOLED modules, be sure that they are not directly exposed to the sunlight or the light of fluorescent lamps. - 11.2.2 The AMOLED modules should be stored under the storage temperature range. If the AMOLED modules will be stored for a long time, the recommended condition is: Temperature: 0°C~40°C Relatively humidity: ≤80% - 11.2.3 The AMOLED modules should be stored in the room without acid, alkali or harmful gas. #### 11.3 Transportation Precautions: 11.3.1 The AMOLED modules should not be suffered from falling and violent shocking during transportation. Besides, excessive press, water, damp and sunshine, should be avoided.